精英家教网 > 高中数学 > 题目详情
3.在△ABC中,a、b、c分别为角A、B、C的对边,若a=2$\sqrt{3}$,sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,sinBsinC=cos2$\frac{A}{2}$,求A、B及b、c.

分析 sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,可得sinC=$\frac{1}{2}$,于是C=$\frac{π}{6}$或$\frac{5π}{6}$.由sinBsinC=cos2$\frac{A}{2}$,可得sinB=cosA+1,对C分类讨论,利用和差化积、正弦定理即可得出.

解答 解:在△ABC中,∵sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,∴sinC=$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{π}{6}$或$\frac{5π}{6}$.
∵sinBsinC=cos2$\frac{A}{2}$,∴sinBsinC=$\frac{cosA+1}{2}$,
∴sinB=cosA+1,
①C=$\frac{π}{6}$时,$sin(\frac{5π}{6}-A)$=cosA+1,化为:$sin(A-\frac{π}{6})$=1,
∵A∈$(0,\frac{5π}{6})$,解得:$A-\frac{π}{6}$=$\frac{π}{2}$,可得A=$\frac{2π}{3}$,
∴B=π-A-B=$\frac{π}{6}$,
由正弦定理可得:$\frac{2\sqrt{3}}{sin\frac{2π}{3}}$=$\frac{b}{sin\frac{π}{6}}$=$\frac{c}{sin\frac{π}{6}}$,解得b=c=2.
②C=$\frac{5π}{6}$,可得$sin(\frac{π}{6}-A)$=cosA+1>1,舍去.

点评 本题考查了和差化积、正弦定理、倍角公式、三角形内角和定理,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c成等比数列.
(1)若$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2\sqrt{3}}{3}$,求∠B值;
(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y2=8x的焦点为F,其准线与x轴的交点为Q,过点F作直线与此抛物线交于A,B两点,若$\overrightarrow{FA}$•$\overrightarrow{QB}$=0,则|AF|-|BF|=(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x-m)2+2.
(1)若函数f(x)的图象过点(2,2),求函数y=f(x)的单调递增区间;
(2)若函数f(x)是偶函数,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求证:对任意x∈R,sinx,cos2x,1+sinx这3个函数的值至少有一个不大于$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点(a,1)到直线x-y+1=0的距离为1,则a的值为(  )
A.1B.-1C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.a=sin$\frac{2π}{7}$,b=cos$\frac{2π}{7}$,c=tan$\frac{2π}{7}$,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在正方体ABCD-A1B1C1D1中,E、F分别是BC、CC1的中点,求证:面A1B1F⊥面C1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=x(lnx-ax)在区间(0,e)上有两个不同的极值点,则实数a的取值范围是(  ) (e是自然对数的底数)
A.$(\frac{1}{2e},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$(\frac{1}{2e},+∞)$D.$(\frac{1}{e},\frac{1}{2})$

查看答案和解析>>

同步练习册答案