精英家教网 > 高中数学 > 题目详情
,若,则(  )
A.B.C.D.
A

试题分析:因为,所以当时,解得,所以。故A正确。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.
(1)求的值及函数的极值;
(2)证明:当时,
(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若,当时,在区间内存在极值,求整数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在R上可导,,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)求函数的单调区间;
(2)求函数 上的最小值;
(3)对一切的,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取极值.
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)求在点处的切线方程;
(2)证明:曲线与曲线有唯一公共点;
(3)设,比较的大小, 并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求函数的最小值;
(2)证明:对,都有

查看答案和解析>>

同步练习册答案