精英家教网 > 高中数学 > 题目详情
已知
(1)求函数的单调区间;
(2)求函数 上的最小值;
(3)对一切的,恒成立,求实数的取值范围.
(1)单调递减区间是,单调递增区间是; (2);(3) .

试题分析:(1)求导得,在中,由解得减区间,由解得增区间;(2)当时,无解,当时,,当时, ;(3) ,即,利用分离变量法得,构造函数,则有最大值,可得的范围.
解:(1)解得的单调递减区间是,
解得 的递增区间是          4分
(2) (ⅰ)0<t<t+2<,t无解;
(ⅱ)0<t<<t+2,即0<t<时,
(ⅲ),即时,单调递增,
 ,                                    8分
(3)由题意:,
,  可得,
,
,
,得(舍),
时,;当时, ,
时,取得最大值, ,  
,
的取值范围是 .                                    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.
(1)当a=1时,求函数f(x)的最小值;
(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;
(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是二次函数,方程有两个相等的实数根,且
(1)求的表达式;
(2)若直线的图象与两坐标轴围成的图形面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知处取最大值。以下各式正确的序号为       
 ② ③ ④ ⑤

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=ln x+ (x>1),其中b为实数.
①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间;
(2)已知函数g(x)具有性质P(2).给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)是否存在实数,使得函数上单调递增?若存在,求出的值或取值范围;否则,请说明理由.
(2)若a<0,且函数y=f(x)的极小值为,求函数的极大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案