精英家教网 > 高中数学 > 题目详情
19.函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x-2k)-k<0,则k的取值范围是(  )
A.(2,+∞)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{4}$,+∞)

分析 根据题意x∈[1,+∞)时,x-2k∈[1-2k,+∞);讨论①1-2k≤0时和②1-2k>0时,存在x∈[1,+∞),使f(x-2k)-k<0时k的取值范围即可.

解答 解:根据题意,x∈[1,+∞)时,x-2k∈[1-2k,+∞);
①当1-2k≤0时,解得k≥$\frac{1}{2}$;存在x∈[1,+∞),使得f(x-2k)-k<0,
即只要f(1-2k)-k<0即可;
∵1-2k≤0,∴f(1-2k)=-(1-2k)2
∴-(1-2k)2-k<0,整理得-1+4k-4k2-k<0,即4k2-3k+1>0;
∵△=(-3)2-16=-7<0,
∴不等式对一切实数都成立,∴k≥$\frac{1}{2}$;
②当1-2k>0时,解得k<$\frac{1}{2}$;
存在x∈[1,+∞),使得f(x-2k)-k<0,
即只要f(1-2k)-k<0即可;
∵1-2k>0,∴f(1-2k)=(1-2k)2
∴(1-2k)2-k<0,整理得4k2-5k+1<0,解得$\frac{1}{4}$<k<1;
又∵k<$\frac{1}{2}$,∴$\frac{1}{4}$<k<$\frac{1}{2}$;
综上,k∈($\frac{1}{4}$,$\frac{1}{2}$)∪[$\frac{1}{2}$,+∞)=($\frac{1}{4}$+∞);
∴k的取值范围是k∈($\frac{1}{4}$,+∞).
故选:D.

点评 本题考查了含有字母系数的不等式的解法与应用问题,也考查了分类讨论思想与转化思想的应用问题,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.定义在R上的奇函数f(x)在(-∞,0)上递增,f(2)=1,则满足|f(log${\;}_{\frac{1}{2}}$x)|>1的x的取值范围是(  )
A.($\frac{1}{4}$,4)B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{2}$)∪(2,+∞)D.(0,$\frac{1}{4}$)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11的展开式中,x2的系数是(  )
A.55B.66C.165D.220

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-4≥0}\\{3x+y-6≤0}\end{array}\right.$,z=ax+y(a<0)的最大值为$\frac{3}{2}$,则a=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若多项式x2+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,则a8=45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为AB中点,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)设ND中点为Q,$λ=\frac{1}{2}$,求证:MQ∥平面ABC;
(Ⅱ)若M到平面BCD的距离为$\frac{{3\sqrt{3}}}{4}$,求直线MC与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥DN⊥平面PBC中,平面PAD⊥平面ABCD,△PAD为等边三角形,AB=AD=$\frac{1}{2}$CD=2,AB⊥AD,AB∥CD,点M是PC的中点.
(I)求证:MB∥平面PAD;
(II)求二面角P-BC-D的余弦值;
(III)在线段PB上是否存在点N,使得DN⊥平面PBC?若存在,请求出$\frac{PN}{PB}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l与抛物线C及其准线分别交于P,Q两点,$\overrightarrow{QF}=3\overrightarrow{FP}$,则直线l的斜率为$±\sqrt{15}$.

查看答案和解析>>

同步练习册答案