分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-4≥0}\\{3x+y-6≤0}\end{array}\right.$,作出可行域如图,
由z=ax+y,a<0得y=-ax+z,平移直线y=-ax,
由图象可知,当直线经过点A时,直线的截距最大,
此时z也最大,由$\left\{\begin{array}{l}{x-y+1=0}\\{3x+y-6=0}\end{array}\right.$,解得A($\frac{5}{4}$,$\frac{9}{4}$),
代入z=ax+y,可得$\frac{3}{2}$=$\frac{5}{4}a$+$\frac{9}{4}$,解得a=$-\frac{3}{5}$.
故答案为:-$\frac{3}{5}$.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $2\sqrt{5}$ | C. | $\sqrt{13}$ | D. | $2\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 1 | C. | 2 | D. | 1或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{e}$) | B. | (-∞,e) | C. | (-e,$\frac{1}{e}$) | D. | (-$\frac{1}{e}$,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (1,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com