精英家教网 > 高中数学 > 题目详情
设等比数列{an}的公比为q,前n项和Sn>0(n=1,2,…).
(Ⅰ)求q的取值范围;
(Ⅱ)设bn=an+2-
32
an+1
,记{bn}的前n项和为Tn,试比较Sn与Tn的大小.
分析:(Ⅰ)设等比数列通式an=a1q(n-1),根据S1>0可知a1大于零,当q不等于1时,根据sn=
a1(1-qn-1)
1-q
>0,进而可推知1-qn>0且1-q>0,或1-qn<0且1-q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.
(Ⅱ)把an的通项公式代入,可得an和bn的关系,进而可知Tn和Sn的关系,再根据(1)中q的范围来判断Sn与Tn的大小.
解答:解:(Ⅰ)设等比数列通式an=a1q(n-1)
根据Sn>0,显然a1>0,
当q不等于1时,前n项和sn=
a1(1-qn)
1-q

所以
 (1-qn)
1-q
>0 所以-1<q<0或0<q<1或q>1
当q=1时 仍满足条件
综上q>0或-1<q<0
(Ⅱ)∵bn=an+2-
3
2
an+1

∴bn=an+2-
3
2
an+1

=anq2-
3
2
anq
=
1
2
an(2q2-3q)
∴Tn=
1
2
(2q2-3q)Sn
∴Tn-Sn=
1
2
Sn(2q2-3q-2)=
1
2
Sn(q-2)(2q+1)
又因为Sn>0,且-1<q<0或q>0,
所以,当-1<q<-
1
2
或q>2时,Tn-Sn>0,即Tn>Sn
当-
1
2
<q<2且q≠0时,Tn-Sn<0,即Tn<Sn
当q=-
1
2
,或q=2时,Tn-Sn=0,即Tn=Sn
点评:本题主要考查了等比数列的性质.在解决数列比较大小的问题上,常利用到不等式的性质来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若8a2+a5=0,则下列式子中数值不能确定的是(  )
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

12、设等比数列{an}的前n项和为Sn,巳知S10=∫03(1+2x)dx,S20=18,则S30=
21

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若S6:S3=3,则S9:S6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若
S6
S3
=3,则
S9
S6
=(  )
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n 项和为Sn,若
S6
S3
=3,则
S9
S3
=
7
7

查看答案和解析>>

同步练习册答案