精英家教网 > 高中数学 > 题目详情
9.若偶函数f(x)在区间(-∞,-1]上是增函数,则下列关系正确的是(  )
A.f(-2)<f(3)B.f(-2)>f(3)C.f(-2)=f(-3)D.f(-1)≠f(1)

分析 根据f(x)在(-∞,-1]上为增函数,且为偶函数,从而由-2>-3便可得到f(-2)>f(3),这样便可找出正确选项.

解答 解:f(x)在(-∞,-1]上是增函数;
-2>-3;
∴f(-2)>f(-3)=f(3);
即f(-2)>f(3);
∴B正确.
故选B.

点评 考查偶函数的定义,增函数的定义,根据增函数的定义比较函数值的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设f(x)=|x-3|+|x-4|
(Ⅰ)求函数g(x)=$\sqrt{2-f(x)}$的定义域;
(Ⅱ)若对任意的实数x,不等式f(x)≥a2-a-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=ax2-x在区间[0,1]上是减函数,则实数a的取值范围是a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sinθcosx+(tanθ-2)sinx-sinθ为偶函数.
(1)求sinθ,cosθ的值;
(2)若函数f(x)的最小值为0,求f(x)的最大值及取最大值时x取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=-x2+3x+1,x∈[m,m+1],求:
(1)f(x)的最小值g(m);
(2)g(m)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=x2-3x的定义域是{0,1,3},则该函数的值域为{0,-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-x+1
(Ⅰ)求f(x)的最大值;
(Ⅱ)求证:对任意的b>a>0,有$\frac{f(b)-f(a)}{b-a}$<$\frac{1}{a(1+a)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的定义域:
(1)y=3${\;}^{\frac{1}{2x+1}}$;
(2)y=$\sqrt{1-(\frac{2}{3})^{x}}$;
(3)y=$\frac{1}{\sqrt{{a}^{x}-2}}$(a>0,a≠1);
(4)y=log2$\frac{1}{3x-2}$;
(5)y=$\sqrt{2lo{g}_{2}x-5}$;
(6)y=log2$\frac{1}{1-{3}^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=$\left\{\begin{array}{l}{1,}&{1≤x≤2}\\{x-1,}&{2<x≤3}\end{array}\right.$,对任意的实数a,记g(a)=max{f(x)-ax|x∈[1,3]},h(a)=min{f(x)-ax|x∈[1,3]},其中maxA,minA分别表示集合A中的最大值与最小值,记v(a)=g(a)-h(a).
(1)若a=$\frac{1}{2}$,求v(a)的值;
(2)求函数v(a)的表达式,并求v(a)的最小值.

查看答案和解析>>

同步练习册答案