精英家教网 > 高中数学 > 题目详情
18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2$\sqrt{3}$,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{7}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.150°B.120°C.60°D.30°

分析 根据平面向量的数量积,即可求出向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

解答 解:设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是θ,
∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2$\sqrt{3}$,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{7}$,
∴${(2\overrightarrow{a}-\overrightarrow{b})}^{2}$=4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$
=4×12-4×1×2$\sqrt{3}$cosθ+${(2\sqrt{3})}^{2}$
=16-8$\sqrt{3}$cosθ=${(2\sqrt{7})}^{2}$,
解得cosθ=-$\frac{\sqrt{3}}{2}$,
又θ∈[0°,180°],
∴θ=150°,
∴向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是150°.
故选:A.

点评 本题考查了平面向量的数量积与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a(x+$\frac{1}{x}}$),(x>0,a>0),点P为函数y=f(x)图象上一动点.
(1)当a=2时,过点P分别向y轴及直线y=2x作垂线,垂足分别为点A,B,试计算线段PA,PB长度之积PA•PB的值;
(2)作曲线y=f(x)在点P处的切线l,记直线l与y轴及直线y=ax的交点分别为M,N,试计算线段PM,PN长度比值$\frac{PM}{PN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知(5x-$\frac{1}{\sqrt{x}}$)n的展开式的各项系数之和为A,二项式系数之和为B,若A-B=56,则展开式中常数项为(  )
A.10B.-10C.-15D.1 5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.曲线f(x)=x3+1在点(1,2)处的切线与x轴、直线x=2所围成的三角形的面积为(  )
A.$\frac{25}{3}$B.$\frac{25}{6}$C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向量$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(-4,x),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=(  )
A.$\frac{8}{3}$B.-$\frac{8}{3}$C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(-2,1),|$\overrightarrow{b}$|=5,且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{b}$=$(-2\sqrt{5},\sqrt{5})$或$(2\sqrt{5},-\sqrt{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(文科答)已知数列{an}及等差数列{bn},若a1=3,an=$\frac{1}{2}$an-1+1(n≥2),a1=b2,2a3+a2=b4
(1)证明数列{an-2}为等比数列;
(2)求数列{bn}的通项公式;
(3)设数列{$\frac{1}{{b}_{n}•{b}_{n+1}}$}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知半径为2的圆的圆心在x轴上,圆心的横坐标是正数,且与直线4x-3y+2=0相切.
(1)求圆的方程;
(2)若直线ax-y+5=0与圆总有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在正方体ABCD-A1B1C1D1中,AB1,BC1上分别有两点E,F,且$\frac{{B}_{1}E}{EA}$=$\frac{{C}_{1}F}{FB}$=$\frac{1}{2}$,求证:EF∥平面ABCD.

查看答案和解析>>

同步练习册答案