精英家教网 > 高中数学 > 题目详情
9.(1)已知$tanα=\frac{1}{3}$,求$\frac{sinα+3cosα}{sinα-cosα}$的值.
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{log{\;}_72}}+{(-9.8)^0}$.

分析 (1)由条件利用同角三角的基本关系,求得要求式子的值.
(2)由条件利用对数的运算性质,求得所给式子的结果.

解答 解:(1)法(一):$\frac{sinα+3cosα}{sinα-cosα}=\frac{tanα+3}{tanα-1}=\frac{{\frac{1}{3}+3}}{{\frac{1}{3}-1}}=-5$.
法(二):由$tanα=\frac{1}{3}$,即$\frac{sinα}{cosα}=\frac{1}{3}$,则cosα=3sinα,∴$\frac{sinα+3cosα}{sinα-cosα}=\frac{sinα+3×3sinα}{sinα-3sinα}=-5$.
(2)原式=${log_3}{3^{\frac{3}{2}}}+lg(25×4)+2+1$=$\frac{3}{2}+lg{10^2}+3$=$\frac{3}{2}+2+3=\frac{13}{2}$.

点评 本题主要考查同角三角的基本关系的应用,对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若直线l的斜率为$-\frac{{\sqrt{3}}}{3}$,则直线l的倾斜角为(  )
A.115°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=log3(3+x)+log3(3-x).
(1)求f(x)的定义域;
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在(1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数); ②当2≤x≤4时,f(x)=1-(x-3)2,若f(x)图象上所有极大值对应的点均落在同一条直线上,则c=(  )
A.1或$\frac{1}{2}$B.$\frac{1}{2}$或2C.1或2D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果三点A(1,5,-2),B(2,4,1),C(a,3,b+2)在同一条直线上,那么a+b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题
B.已知x∈R,则“x>1”是“x>2”的充分不必要条件
C.命题“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”
D.命题“若am2<bm2,则a<b”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=2xlnx的图象在x=1处切线的斜率为(  )
A.0B.2C.1D.2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)是R上的可导函数,且f′(x)=1+cosx,则函数f(x)的解析式可以为f(x)=x+sinx.(只须写出一个符合题意的函数解析式即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin2x+$\sqrt{3}$sin($\frac{π}{2}$+2x)
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单凋增区间;
(3)求函数f(x)的最大值和最小值及相应的x的值.

查看答案和解析>>

同步练习册答案