精英家教网 > 高中数学 > 题目详情

【题目】已知函数对于任意的都有,当时,则

(1)判断的奇偶性;

(2)求上的最大值;

(3)解关于的不等式.

【答案】(1) 函数f(x)为奇函数.

(2)6.

(3)见解析.

【解析】

分析:(1)取x=y=0可得f(0)=0;再取y=﹣x代入即可;

(2)先判断函数的单调性,再求函数的最值;

(3)由于f(x)为奇函数,整理原式得 f(ax2)+f(﹣2x)<f(ax)+f(﹣2);即f(ax2﹣2x)<f(ax﹣2);再由函数的单调性可得ax2﹣2x>ax﹣2,从而求解.

详解:(1)取x=y=0,

则f(0+0)=f(0)+f(0);

则f(0)=0;

取y=﹣x,则f(x﹣x)=f(x)+f(﹣x),

f(﹣x)=﹣f(x)对任意xR恒成立

f(x)为奇函数;

(2)任取x1,x2∈(﹣∞,+∞)且x1<x2,则x2﹣x1>0;

∴f(x2)+f(﹣x1)=f(x2﹣x1)<0;

∴f(x2)<﹣f(﹣x1),

f(x)为奇函数

∴f(x1)>f(x2);

f(x)在(﹣∞,+∞)上是减函数;

对任意x∈[﹣3,3],恒有f(x)≤f(﹣3)

而f(3)=f(2+1)=f(2)+f(1)=3f(1)=﹣2×3=﹣6;

∴f(﹣3)=﹣f(3)=6;

f(x)在[﹣3,3]上的最大值为6;

(3)∵f(x)为奇函数,

整理原式得 f(ax2)+f(﹣2x)<f(ax)+f(﹣2);

即f(ax2﹣2x)<f(ax﹣2);

而f(x)在(﹣∞,+∞)上是减函数,

∴ax2﹣2x>ax﹣2;

∴(ax﹣2)(x﹣1)>0.

当a=0时,x∈(﹣∞,1);

当a=2时,x∈{x|x≠1且x∈R};

当a0时,

当0<a<2时,

当a2时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.

(1)求证:ADAB=AEAC;
(2)求线段BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种产品,根据经验,其次品率与日产量 (万件)之间满足关系, (其中为常数,且,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如表示每生产10件产品,有1件次品,其余为合格品).

1)试将生产这种产品每天的盈利额 (万元)表示为日产量 (万件)的函数;

2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sinωx(ω>0),将f(x)的图象向左平移 个单位从长度后,所得图象与原函数的图象重合,则ω的最小值为(
A.
B.3
C.6
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:

2

3

4

5

6

7

(1)请用相关系数加以说明之间存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).

附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

,相关系数公式为:.

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:x2=2py(p>0),点A(p, )到抛物线C1的准线的距离为2.
(1)求抛物线C1的方程;
(2)过点A作圆C2:x2+(y﹣a)2=1的两条切线,分别交抛物线于M,N两点,若直线MN的斜率为﹣1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明,则当时,等式左边应在的基础上加上( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励市民节约用电,实行“阶梯式”电价,某边远山区每户居民月用电量划分为三档:月用电量不超过150度,按0.6元/度收费,超过150度但不超过250度的部分每度加价0.1元,超过250度的部分每度再加价0.3元收费.

(1)求该边远山区某户居民月用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

(2)已知该边远山区贫困户的月用电量(单位:度)与该户长期居住的人口数(单位:人)间近似地满足线性相关关系:的值精确到整数),其数据如表:

14

15

17

18

161

168

191

200

现政府为减轻贫困家庭的经济负担,计划对该边远山区的贫困家庭进行一定的经济补偿,给出两种补偿方案供选择:一是根据该家庭人数,每人每户月补偿6元;二是根据用电量每人每月补偿为用电量)元,请根据家庭人数分析,一个贫困家庭选择哪种补偿方式可以获得更多的补偿?

附:回归直线中斜率和截距的最小二乘法估计公式分别为:

.

参考数据:.

查看答案和解析>>

同步练习册答案