精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.

(1)求证:ADAB=AEAC;
(2)求线段BC的长度.

【答案】
(1)

证明:由已知∠BDC=∠BEC=90°,

所以B,C,D,E四点在以BC为直径的圆上,

由割线定理知:ADAB=AEAC


(2)

解:如图,过点F作FG⊥BC于点G,

由已知,∠BDC=90°,又因为FG⊥BC,所以B,G,F,D四点共圆,

所以由割线定理知:CGCB=CFCD,①

同理,F,G,C,E四点共圆,由割线定理知:

BFBE=BGBC,②

①+②得:CGCB+BGBC=CFCD+BFBE,

即BC2=CFCD+BFBE=3×5+3×5=30,

所以BC=


【解析】(1)推导出B,C,D,E四点在以BC为直径的圆上,由割线定理能证明ADAB=AEAC.(2)过点F作FG⊥BC于点G,推导出B,G,F,D四点共圆,F,G,C,E四点共圆,由此利用割线定理能求出BC的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)xa2-1=0,a∈R},若BA,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex﹣ax2(a∈R).
(1)若函数g(x)= 是奇函数,求实数a的值;
(2)若对任意的实数a,函数h(x)=kx+b(k,b为实常数)的图象与函数f(x)的图象总相切于一个定点. ①求k与b的值;
②对(0,+∞)上的任意实数x1 , x2 , 都有[f(x1)﹣h(x1)][f(x2)﹣h(x2)]>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex(x3﹣3x+3)﹣aex﹣x(x≥﹣2),若不等式f(x)≤0有解,则实数α的最小值为(
A.
B.2﹣
C.1﹣
D.1+2e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|<
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线的极坐标方程为,圆C的参数方程为

(1)求直线被圆C所截得的弦长;

(2)已知点,过点的直线与圆所相交于不同的两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1(a>b>0),作直线l交椭圆于P,Q两点,M为线段PQ的中点,O为坐标原点,设直线l的斜率为k1 , 直线OM的斜率为k2 , k1k2=﹣
(1)求椭圆C的离心率;
(2)设直线l与x轴交于点D(﹣ ,0),且满足 =2 ,当△OPQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数是定义在R上的周期为2的奇函数,时,的值是____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对于任意的都有,当时,则

(1)判断的奇偶性;

(2)求上的最大值;

(3)解关于的不等式.

查看答案和解析>>

同步练习册答案