精英家教网 > 高中数学 > 题目详情
10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),其离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的右顶点为A,直线l交C于两点M、N(异于点A),若D在MN上,且AD⊥MN,|AD|2=|MD||ND|,证明直线l过定点.

分析 (Ⅰ)运用椭圆的离心率公式和点P满足椭圆方程,以及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;
(Ⅱ)运用三角形的相似的判定和性质定理,可得∠MAN=90°,联立方程组$\left\{\begin{array}{l}{3{x}^{2}+4{y}^{2}=12}\\{y=kx+m}\end{array}\right.$,设M(x1,y1)N(x2,y2),A(2,0),可得(3+4k2)x2+8km+4m2-12=0,由两直线垂直的条件:斜率之积为-1,得到,7m2+16km+4k2=0,7m=-2k,m=-2k,代入求解即可得出定点.

解答 解:(Ⅰ)由题意可得e=$\frac{c}{a}$=$\frac{1}{2}$,
又a2-b2=c2
且$\frac{1}{{a}^{2}}$+$\frac{9}{4{b}^{2}}$=1,
解得a=2,c=1,b=$\sqrt{3}$,
可得椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)证明:由AD⊥MN,|AD|2=|MD||ND|,
可得Rt△ADM∽Rt△DNA,
即有∠DNA=∠MAD,即∠MAN=90°,
由$\left\{\begin{array}{l}{3{x}^{2}+4{y}^{2}=12}\\{y=kx+m}\end{array}\right.$,M(x1,y1)N(x2,y2),A(2,0),
可得(3+4k2)x2+8km+4m2-12=0,
x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,△=(8km)2-4(3+4k2)(4m2-12)>0,
即4k2>m2-3,
由AM⊥AN,可得$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=-1,
即为(x1-2)(x2-2)+(kx1+m)(kx2+m)=0,
即(k2+1)x1x2+(mk-2)(x1+x2)+m2+4=0,
即有(k2+1)•$\frac{4{m}^{2}-12}{3+4{k}^{2}}$+(mk-2)(-$\frac{8km}{3+4{k}^{2}}$)+m2+4=0,
化简可得7m2+16km+4k2=0,
m=-$\frac{2}{7}$k或m=-2k,满足判别式大于0,
当m=-$\frac{2}{7}$k时,y=kx+m=k(x-$\frac{2}{7}$)(k≠0),
直线l过定点($\frac{2}{7}$,0);
当m=-2k时,y=kx-2k=k(x-2),直线l过定点(2,0).
由右顶点为A(2,0),则直线l过定点(2,0)不符合题意,
当直线的斜率不存在时,也成立.
根据以上可得:直线l过定点,且为($\frac{2}{7}$,0).

点评 本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查直线与椭圆的位置关系,联立方程组,结合韦达定理整体求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若|x-3|+|x-6y|=0,则log2yx=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知ω>0,函数f(x)=sinωx+$\sqrt{3}$cosωx在(0,$\frac{π}{2}}$)上单调递增,则ω的取值范围是(  )
A.0<ω≤$\frac{1}{3}$B.$\frac{1}{4}$<ω≤$\frac{1}{3}$C.0<ω≤$\frac{1}{4}$D.$\frac{1}{12}$<ω≤$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>c)的离心率为$\frac{{\sqrt{2}}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为2.
(1)求椭圆E的方程;
(2)直线y=kx+1与椭圆E交于A,B两点,以AB为直径的圆与y轴正半轴交于点C.是否存在实数k,使得y轴恰好平分∠ACB?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下面的几种推理过程是演绎推理的是(  )
A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°
B.由平面三角形的性质,推测空间四面体性质
C.某校高三共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人
D.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此归纳出{an}的通项公式

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点O在平面ABC内,若$\overrightarrow{AO}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ∈R),则直线AO经过△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用反证法证明命题:“设实数a,b,c满足a+b+c=3,则a,b,c中至少有一个数不小于1”时,第一步应写:假设a,b,c都小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-1),则双曲线的标准方程为(  )
A.$\frac{x^2}{2}$-$\frac{y^2}{2}$=1B.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{2}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点($\frac{1}{2}$,$\frac{\sqrt{6}}{4}$)是等轴双曲线C:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{a}^{2}}$=1上一点,抛物线x2=2py(p>0)的焦点与双曲线C的一个焦点重合.
(1)求抛物线的方程;
(2)若点P是抛物线上的动点,点A,B在x轴上,圆x2+(y-1)2=1内切于△PAB,求△PAB面积的最小值.

查看答案和解析>>

同步练习册答案