精英家教网 > 高中数学 > 题目详情
5.下面的几种推理过程是演绎推理的是(  )
A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°
B.由平面三角形的性质,推测空间四面体性质
C.某校高三共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人
D.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此归纳出{an}的通项公式

分析 演绎推理是由普通性的前提推出特殊性结论的推理.其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得出正确选项.

解答 解:A选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“∠A与∠B是两条平行直线的同旁内角”,结论是“∠A+∠B=180°”
B选项“由平面三角形的性质,推测空间四面体性质”是类比推理;
C选项:某校高二共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人,是归纳推理;
D选项中,在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此归纳出{an}的通项公式,是归纳推理.
综上得,A选项正确
故选A.

点评 本题考点是进行简单的演绎推理,解题的关键是熟练掌握演绎推理的定义及其推理形式,演绎推理是由普通性的前提推出特殊性结论的推理.演绎推理主要形式有三段论,其结构是大前提、小前提、结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若展开式(x-1)7,并按x的降次幂排列,则系数最大的项是(  )
A.第4项和第5项B.第4项C.第5项D.第6项

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三段论推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是②.(填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设F(0,1),点P在x轴上,点Q在y轴上,$\overrightarrow{QN}$=2$\overrightarrow{QP}$,$\overrightarrow{QP}$⊥$\overrightarrow{PF}$,当点P在x轴上运动时,点N的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F的直线l交曲线C于A,B两点,且曲线C在A,B两点处的切线相交于点M,若△MAB的三边成等差数列,求此时点M到直线AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的上顶点M与左、右焦点F1、F2构成三角形MF1F2面积为$\sqrt{3}$,又椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程;
(2)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的k倍,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),其离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的右顶点为A,直线l交C于两点M、N(异于点A),若D在MN上,且AD⊥MN,|AD|2=|MD||ND|,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>1),过点B($\frac{4}{5}$,-$\frac{1}{5}$)作斜率为1的直线l交椭圆E于C、D两点,点B恰为线段CD的中点,O为坐标原点.
(1)求椭圆E的标准方程;
(2)设动点Q在椭圆E上,点R(-1,0),若直线QR的斜率大于1,求直线OQ的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,则双曲线的离心率为(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{2}$C.$\frac{1+\sqrt{2}}{2}$D.$\frac{3+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若将函数y=3sin(6x+$\frac{π}{6}$)的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移$\frac{π}{6}$个单位长度,得到函数y=f(x)的图象,若y=f(x)+a在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有两个不同的零点,则实数a的取值范围是(  )
A.[-3,$\frac{3}{2}$]B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[$\frac{3}{2}$,3]D.(-3,-$\frac{3}{2}$]

查看答案和解析>>

同步练习册答案