| A. | $\frac{1+\sqrt{5}}{2}$ | B. | $\frac{3+\sqrt{5}}{2}$ | C. | $\frac{1+\sqrt{2}}{2}$ | D. | $\frac{3+\sqrt{2}}{2}$ |
分析 由题意可得顶点和虚轴端点坐标及焦点坐标,求得菱形的边长,运用等积法可得$\frac{1}{2}$•2b•2c=$\frac{1}{2}$a•4$\sqrt{{b}^{2}+{c}^{2}}$,再由a,b,c的关系和离心率公式,计算即可得到所求值.
解答 解:由题意可得A1(-a,0),A2(a,0),B1(0,b),B2(0,-b),
F1(-c,0),F2(c,0),
且a2+b2=c2,菱形F1B1F2B2的边长为$\sqrt{{b}^{2}+{c}^{2}}$,
由以A1A2为直径的圆内切于菱形F1B1F2B2,
运用面积相等,可得
$\frac{1}{2}$•2b•2c=$\frac{1}{2}$a•4$\sqrt{{b}^{2}+{c}^{2}}$,
即为b2c2=a2(b2+c2),
即有c4+a4-3a2c2=0,
由e=$\frac{c}{a}$,可得e4-3e2+1=0,
解得e2=$\frac{3±\sqrt{5}}{2}$,
可得e=$\frac{1+\sqrt{5}}{2}$,($\frac{\sqrt{5}-1}{2}$舍去).
故选:A.
点评 本题考查双曲线的离心率的求法,注意运用圆内切等积法,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180° | |
| B. | 由平面三角形的性质,推测空间四面体性质 | |
| C. | 某校高三共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人 | |
| D. | 在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此归纳出{an}的通项公式 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sinx | B. | y=-|x+1| | C. | y=ln$\frac{1-x}{1+x}$ | D. | y=$\frac{1}{2}$(ex+e-x) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{2}$-$\frac{y^2}{2}$=1 | B. | $\frac{x^2}{4}$-$\frac{y^2}{4}$=1 | C. | $\frac{x^2}{4}$-y2=1 | D. | $\frac{x^2}{2}$-y2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 所用时间(分钟) | 10~20 | 20~30 | 30~40 | 40~50 | 50~60 |
| 选择L1的人数 | 60 | 120 | 180 | 120 | 120 |
| 选择L2的人数 | 0 | 40 | 160 | 160 | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com