精英家教网 > 高中数学 > 题目详情
9.下列函数中既是奇函数又在区间(-1,1)上单调递减的是(  )
A.y=sinxB.y=-|x+1|C.y=ln$\frac{1-x}{1+x}$D.y=$\frac{1}{2}$(ex+e-x

分析 根据正弦函数的单调性,奇函数在原点有定义时,原点处的函数值为0,以及奇函数定义,复合函数单调性的判断,对数函数的单调性,反比例函数的单调性,以及偶函数的定义便可判断每个选项的正误,从而找出正确选项.

解答 解:A.y=sinx在(-1,1)上单调递增,∴该选项错误;
B.x=0时,y=-1,即该函数不过原点,∴不是奇函数,∴该选项错误;
C.解$\frac{1-x}{1+x}>0$得,-1<x<1;且$ln\frac{1-(-x)}{1+(-x)}=ln\frac{1+x}{1-x}=-ln\frac{1-x}{1+x}$;
∴该函数为奇函数;
设$t=\frac{1-x}{1+x}=-1+\frac{2}{1+x}$,则y=lnt为增函数,且$t=-1+\frac{2}{1+x}$在(-1,1)上为减函数;
∴函数$y=ln\frac{1-x}{1+x}$在(-1,1)上为减函数,∴该选项正确;
D.设y=f(x),显然f(-x)=f(x);
∴该函数是偶函数,∴该选项错误.
故选C.

点评 考查正弦函数的单调性,奇函数、偶函数的定义,奇函数在原点有定义时,原点处的函数值为0,以及对数函数、反比例函数的单调性,复合函数单调性的判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x|x-a|+a2-7(a∈R).
(1)求函数f(x)的单调区间;
(2)设函数g(x)=|x+a|(a∈R),若对任意x1≤1.总存在x2≥2,使g(x1)>f(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的上顶点M与左、右焦点F1、F2构成三角形MF1F2面积为$\sqrt{3}$,又椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程;
(2)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的k倍,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>1),过点B($\frac{4}{5}$,-$\frac{1}{5}$)作斜率为1的直线l交椭圆E于C、D两点,点B恰为线段CD的中点,O为坐标原点.
(1)求椭圆E的标准方程;
(2)设动点Q在椭圆E上,点R(-1,0),若直线QR的斜率大于1,求直线OQ的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,动点P到定点F(1,0)的距离和它到定直线x=2的距离比是$\frac{\sqrt{2}}{2}$.
(1)求动点P的轨迹C的方程;
(2)设过点Q($\frac{\sqrt{2}}{3}$,0)的直线l与曲线C交于点M,N,求证:点A($\sqrt{2}$,0)在以MN为直经的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,则双曲线的离心率为(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{2}$C.$\frac{1+\sqrt{2}}{2}$D.$\frac{3+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中:
①若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$;
②若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=0;
③若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
④若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$;
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘成频率分布直方图(如图).
(Ⅰ)由图中数据求a的值;
(Ⅱ)若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取12人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{x+3,x≤1}\\{-{x}^{2}+2x+3,x>1}\end{array}\right.$,则使得f(x)-ex-m≤0恒成立的m的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

同步练习册答案