精英家教网 > 高中数学 > 题目详情
19.已知f(x)=$\left\{\begin{array}{l}{x+3,x≤1}\\{-{x}^{2}+2x+3,x>1}\end{array}\right.$,则使得f(x)-ex-m≤0恒成立的m的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

分析 运用参数分离的方法,分别讨论当x≤1时,当x>1时,函数f(x)-ex的单调性和最大值的求法,注意运用导数,最后求交集即可.

解答 解:当x≤1时,f(x)-ex-m≤0即为m≥x+3-ex
可令g(x)=x+3-ex,则g′(x)=1-ex,当0<x<1时,g′(x)<0,g(x)递减;
当x<0时,g′(x)>0,g(x)递增.g(x)在x=0处取得极大值,也为最大值,且为2,
则有m≥2  ①
当x>1时,f(x)-ex-m≤0即为m≥-x2+2x+3-ex
可令h(x)=-x2+2x+3-ex,h′(x)=-2x+2-ex,由x>1,则h′(x)<0,
即有h(x)在(1,+∞)递减,则有h(x)<h(1)=4-e,
则有m≥4-e  ②
由①②可得,m≥2成立.
故选:D.

点评 本题考查不等式恒成立问题注意转化为求函数的最值问题,同时考查运用导数判断单调性,求最值的方法,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列函数中既是奇函数又在区间(-1,1)上单调递减的是(  )
A.y=sinxB.y=-|x+1|C.y=ln$\frac{1-x}{1+x}$D.y=$\frac{1}{2}$(ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的焦点在y轴上,从上焦点看一个短轴上两个顶点的张角为60°,求此椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数p>0,直线4x+3y-2p=0与抛物线y2=2px和圆(x-$\frac{p}{2}$)2+y2=$\frac{{p}^{2}}{4}$从上到下的交点依次为A,B,C,D,则$\frac{|AC|}{|BD|}$的值为(  )
A.$\frac{1}{8}$B.$\frac{5}{16}$C.$\frac{3}{8}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.向量$\overrightarrow{AB}$与向量$\overrightarrow{a}$=(-3,4)的夹角为π,|$\overrightarrow{AB}$|=10,若点A的坐标是(1,2),则点B的坐标为(7,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数Z满足|Z|=$\sqrt{2}$,Z2的虚部是2.设Z,Z2,Z-Z2在复平面上的对应点分别为A,B,C,则△ABC的面积为4或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若z1=a+2i,z2=3-4i,且$\frac{z_1}{z_2}$为虚数,则a的范围是a≠$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f0(x)=sinx-cosx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn+1(x)=f′n(x),n∈N,则${f_{2013}}(\frac{π}{3})$=$\frac{{1+\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.($\frac{2}{x}$-$\sqrt{x}$)6的展开式中常数项为60.

查看答案和解析>>

同步练习册答案