精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系xOy中,动点P到定点F(1,0)的距离和它到定直线x=2的距离比是$\frac{\sqrt{2}}{2}$.
(1)求动点P的轨迹C的方程;
(2)设过点Q($\frac{\sqrt{2}}{3}$,0)的直线l与曲线C交于点M,N,求证:点A($\sqrt{2}$,0)在以MN为直经的圆上.

分析 (1)设点P(x,y),依题意可得$\frac{{\sqrt{{{(x-1)}^2}+{y^2}}}}{|x-2|}=\frac{{\sqrt{2}}}{2}$,由此能求出动点P的轨迹方程.
(2)设直线l的方程为$x=my+\frac{{\sqrt{2}}}{3}$,由$\left\{\begin{array}{l}{x^2}+2{y^2}=2\\ x=my+\frac{{\sqrt{2}}}{3}.\end{array}\right.$,得$({m^2}+2){y^2}+\frac{{2\sqrt{2}}}{3}my-\frac{16}{9}=0$,由此利用根的判别式、韦达定理、向量的数量积、椭圆性质,结合已知条件能证明点$A(\sqrt{2},0)$在以MN为直径的圆上.

解答 解:(1)设点P(x,y),
依题意可得$\frac{{\sqrt{{{(x-1)}^2}+{y^2}}}}{|x-2|}=\frac{{\sqrt{2}}}{2}$.…(2分)
整理得,x2+2y2=2.…(4分)
所以动点P的轨迹方程为x2+2y2=2.
证明:(2)依题意,设直线l的方程为$x=my+\frac{{\sqrt{2}}}{3}$.…(5分)
由$\left\{\begin{array}{l}{x^2}+2{y^2}=2\\ x=my+\frac{{\sqrt{2}}}{3}.\end{array}\right.$,得$({m^2}+2){y^2}+\frac{{2\sqrt{2}}}{3}my-\frac{16}{9}=0$.…①…(6分)
设M(x1,y1),N(x2,y2),则y1,y2是方程①的两根,
所以$\left\{\begin{array}{l}{y_1}+{y_2}=-\frac{{2\sqrt{2}m}}{{3({m^2}+2)}}\\{y_1}•{y_2}=-\frac{16}{{9({m^2}+2)}}.\end{array}\right.$,
且${x_1}=m{y_1}+\frac{{\sqrt{2}}}{3},{x_2}=m{y_2}+\frac{{\sqrt{2}}}{3}$.…(7分)
$\begin{array}{l}因为\overrightarrow{AM}•\overrightarrow{AN}=(\sqrt{2}-{x_1},-{y_1})•(\sqrt{2}-{x_2},-{y_2})\end{array}$…(8分)
=($\frac{2\sqrt{2}}{3}$-my1,-y1)•($\frac{2\sqrt{2}}{3}$-my2,-y2
=$\frac{8}{9}+\frac{8{m}^{2}}{9({m}^{2}+2)}$-(1+m2)×$\frac{16}{9(1+{m}^{2})}×\frac{16}{9({m}^{2}+2)}$

=$\frac{8}{9}-\frac{2\sqrt{2}}{3}m({y}_{1}+{y}_{2})+(1+{m}^{2}){y}_{1}{y}_{2}$ …(9分)
=$\frac{8{m}^{2}+16+8{m}^{2}-16-16{m}^{2}}{9({m}^{2}+2)}$=0…(10分)
所以,AM⊥AN.…(11分)
所以点$A(\sqrt{2},0)$在以MN为直径的圆上.…(12分)

点评 本题考查点的轨迹方程的求法,考查点在圆上的证明,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量的数量积、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知m<-2,点(m-1,y1),(m,y2),(m+1,y3)都在二次函数y=x2+2x的图象上,则一定有(  )
A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下面几种推理中是演绎推理的是(  )
A.由金、银、铜、铁可导电,猜想:金属都可以导电
B.猜想数列5,7,9,11,…的通项公式为an=2n+3
C.半径为r的圆的面积S=π•r2,则单位圆的面积S=π
D.由正三角形的性质得出正四面体的性质

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),右焦点到椭圆上的点的距离的最大值为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点A,B是椭圆C上的两个动点,直线OA,OB与椭圆的另一交点分别为A1,B1,且直线OA,OB的斜率之积等于-$\frac{3}{4}$,问四边形ABA1B1的面积S是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆的一般方程x2+y2-4x-2y-5=0,其半径是$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中既是奇函数又在区间(-1,1)上单调递减的是(  )
A.y=sinxB.y=-|x+1|C.y=ln$\frac{1-x}{1+x}$D.y=$\frac{1}{2}$(ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=|x•ex|,又g(x)=f2(x)+tf(x)(t∈R),若满足g(x)=-1的x有四个,则t的取值范围为(  )
A.(-∞,-$\frac{{e}^{2}+1}{e}$)B.($\frac{{e}^{2}+1}{e}$,+∞)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某电子商务公司对1000名网络购物者2015年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为600.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.向量$\overrightarrow{AB}$与向量$\overrightarrow{a}$=(-3,4)的夹角为π,|$\overrightarrow{AB}$|=10,若点A的坐标是(1,2),则点B的坐标为(7,-6).

查看答案和解析>>

同步练习册答案