分析 (Ⅰ)运用椭圆的离心率公式和椭圆的最值的结论,解关于a,b,c的方程组,求得a,b的值,则椭圆方程可求;
(Ⅱ)讨论直线AB的斜率不存在,求得A的坐标,由面积公式可得S;直线AB的斜率存在时,设AB:y=kx+m,代入椭圆方程3x2+4y2=12,设A(x1,y1),B(x2,y2),运用韦达定理和弦长公式,点到直线的距离公式,面积公式,化简整理,即可得到所求定值.
解答 解:(Ⅰ)由题意得e=$\frac{c}{a}$=$\frac{1}{2}$,
右焦点(c,0)到椭圆上的点的距离的最大值为3,
可得c+a=3,
解得a=2,c=1,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
即有椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)结论:四边形ABA1B1的面积为定值4$\sqrt{3}$.
理由如下:当直线AB的斜率不存在时,
设A(x,y),可得$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,又$\frac{-{y}^{2}}{{x}^{2}}$=-$\frac{3}{4}$,
解得|x|=$\sqrt{2}$,|y|=$\frac{\sqrt{6}}{2}$,
则S=4|xy|=4$\sqrt{3}$;
当直线AB的斜率存在,设AB:y=kx+m,代入椭圆方程3x2+4y2=12,
可得(3+4k2)x2+8kmx+4m2-12=0,
△=64k2m2-4(3+4k2)(4m2-12)>0,
即为3+4k2>m2,
设A(x1,y1),B(x2,y2),
x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
由题意可得$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{3}{4}$,即3x1x2+4y1y2=0,
即(3+4k2)x1x2+4km(x1+x2)+4m2=0,
代入韦达定理,可得3+4k2=2m2,
由|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{64{k}^{2}{m}^{2}}{(3+4{k}^{2})^{2}}-\frac{16{m}^{2}-48}{3+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{3}\sqrt{3+4{k}^{2}-{m}^{2}}}{3+4{k}^{2}}$
=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{3}•|m|}{2{m}^{2}}$,
由O到直线AB的距离为d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$,
则S=4S△OAB=2|AB|d=2$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{3}•|m|}{2{m}^{2}}$•$\frac{|m|}{\sqrt{1+{k}^{2}}}$=4$\sqrt{3}$.
综上可得,四边形ABA1B1的面积S为定值4$\sqrt{3}$.
点评 本题是一道直线与椭圆的综合题,考查椭圆的标准方程、点到直线的距离、三角形面积公式,韦达定理等基础知识,考查分类讨论的思想,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 方程x3+ax2+b=0至多有一个实根 | B. | 方程x3+ax2+b=0没有实根 | ||
| C. | 方程x3+ax2+b=0至多有两个实根 | D. | 方程x3+ax2+b=0恰好有两个实根 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com