精英家教网 > 高中数学 > 题目详情
14.已知m<-2,点(m-1,y1),(m,y2),(m+1,y3)都在二次函数y=x2+2x的图象上,则一定有(  )
A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3

分析 求出二次函数的对称轴,再根据二次函数的单调性判断即可

解答 解:对称轴为直线x=-$\frac{2}{2×1}$=-1,
∴当x<-1时,y随x的增大而减小,
∵m<-2,
∴m+1<-1,m-1<-3,
∴m-1<m<m+1,
∴y3<y2<y1
故选:B.

点评 本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,然后利用二次函数的单调性求解更简便

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设直角坐标系xoy内的一点P(m,n),且满足$\frac{1+i}{2-i}$=$\frac{m+ni}{5}$(i是虚数单位),则mn=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,cosA=$\frac{1}{3}$,AB=2,则$\overrightarrow{CA}•\overrightarrow{CB}$的最小值是-$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设命题p:函数f(x)=ln(x2-ax+a)的定义域为实数集R,命题q:a≤x+$\frac{1}{x}$对任意正实数x恒成立,若复合命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知2a=3b=k(k≠1),且2a+b=2ab,则实数k的值为(  )
A.18B.18 或-18C.$3\sqrt{2}$或 $-3\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x|x-a|+a2-7(a∈R).
(1)求函数f(x)的单调区间;
(2)设函数g(x)=|x+a|(a∈R),若对任意x1≤1.总存在x2≥2,使g(x1)>f(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆Γ:$\frac{{a}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点:
(1)求椭圆Г的方程:
(2)设点A在椭圆Г上,点B在直线y=2上,且OA⊥OB,求证:$\frac{1}{O{A}^{2}}$+$\frac{1}{O{B}^{2}}$为定值:
(3)设点C在Γ上运动,OC⊥OD,且点O到直线CD距离为常数d(0<d<2),求动点D的轨迹方程:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的两焦点为F1(-c,0),F2(c,0),椭圆的上顶点M满足$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_2}M}$=0.
(Ⅰ)求椭圆C的离心率e;
(Ⅱ)若以点N(0,2)为圆心,且与椭圆C有公共点的圆的最大半径为$\sqrt{26}$.
(ⅰ)求此时椭圆C的方程;
(ⅱ)椭圆C上是否存在两点A,B关于直线l:y=kx-1(k≠0)对称,若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,动点P到定点F(1,0)的距离和它到定直线x=2的距离比是$\frac{\sqrt{2}}{2}$.
(1)求动点P的轨迹C的方程;
(2)设过点Q($\frac{\sqrt{2}}{3}$,0)的直线l与曲线C交于点M,N,求证:点A($\sqrt{2}$,0)在以MN为直经的圆上.

查看答案和解析>>

同步练习册答案