精英家教网 > 高中数学 > 题目详情
20.已知点($\frac{1}{2}$,$\frac{\sqrt{6}}{4}$)是等轴双曲线C:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{a}^{2}}$=1上一点,抛物线x2=2py(p>0)的焦点与双曲线C的一个焦点重合.
(1)求抛物线的方程;
(2)若点P是抛物线上的动点,点A,B在x轴上,圆x2+(y-1)2=1内切于△PAB,求△PAB面积的最小值.

分析 (1)求出双曲线方程,可得焦点坐标,利用抛物线x2=2py(p>0)的焦点与双曲线C的一个焦点重合,求出求抛物线的方程;
(2)设P(x0,y0),A(m,0),B(n,0),n>m.由圆心(1,0)到直线PB的距离是1,知(y0-2)n2+2nx0-y0=0,同理,(y0-2)m2+2mx0-y0=0,所以(m-n)2=$\frac{4{{x}_{0}}^{2}+4{{y}_{0}}^{2}-8{y}_{0}}{({y}_{0}-2)^{2}}$,从而得到S△PBC=$\frac{1}{2}$(n-m)y0,由此能求出△PBC面积的最小值.

解答 解:(1)∵点($\frac{1}{2}$,$\frac{\sqrt{6}}{4}$)是等轴双曲线C:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{a}^{2}}$=1上一点,
∴$\frac{\frac{6}{16}}{{a}^{2}}$-$\frac{\frac{1}{4}}{{a}^{2}}$=1,∴a2=$\frac{1}{8}$,
∴c2=2a2=$\frac{1}{4}$,∴c=$\frac{1}{2}$,
∵抛物线x2=2py(p>0)的焦点与双曲线C的一个焦点重合,
∴$\frac{p}{2}$=$\frac{1}{2}$,
∴p=1,
∴抛物线的方程为x2=2y;
(2)设P(x0,y0),A(m,0),B(n,0),n>m.
直线PB的方程:y-0=$\frac{{y}_{0}}{{x}_{0}-n}$(x-n),
化简,得y0x+(n-x0)y-y0n=0,
∵圆心(0,1)到直线PB的距离是1,
∴$\frac{|n-{x}_{0}-{y}_{0}n|}{\sqrt{{{y}_{0}}^{2}+(n-{x}_{0})^{2}}}$=1,
∴y02+(n-x02=(n-x0))2-2y0n(n-x0))+y02n2
∵y0>2,上式化简后,得(y0-2)n2+2nx0-y0=0,
同理,(y0-2)m2+2mx0-y0=0,
∴m+n=$\frac{-2{x}_{0}}{{y}_{0}-2}$,mn=$\frac{-{y}_{0}}{{y}_{0}-2}$,
∴(m-n)2=$\frac{4{{x}_{0}}^{2}+4{{y}_{0}}^{2}-8{y}_{0}}{({y}_{0}-2)^{2}}$,
∵P(x0,y0)是抛物线上的一点,
∴x02=2y0
∴(m-n)2=$\frac{4{{y}_{0}}^{2}}{({y}_{0}-2)^{2}}$,n-m=$\frac{2{y}_{0}}{{y}_{0}-2}$,
∴S△PBC=$\frac{1}{2}$(n-m)y0=(y0-2)+$\frac{4}{{y}_{0}-2}$+4≥2$\sqrt{4}$+4=8.
当且仅当y0-2=$\frac{4}{{y}_{0}-2}$时,取等号.
此时y0=4,x0=±2$\sqrt{2}$.
∴△PBC面积的最小值为8.

点评 本题考查三角形面积的最小值的求法,具体涉及到抛物线的性质、抛物线和直线的位置关系、圆的简单性质、均值定理等基本知识,综合性强,难度大,对数学思想的要求较高,解题时要注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),其离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的右顶点为A,直线l交C于两点M、N(异于点A),若D在MN上,且AD⊥MN,|AD|2=|MD||ND|,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2垂直平分线交l2于点M.
(1)求点M的轨迹E的方程;
(2)若点A的坐标为(2,4),直线l:x=ky+2(k∈R),与曲线E相交于B,C两点,直线AB,AC分别交直线l1于点S、T,试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x>0}\\{{x}^{2}+1,x≤0}\end{array}\right.$,若存在x1∈(0,+∞),x2∈(-∞,0],使得f(x1)=f(x2),则x1的最小值为(  )
A.log23B.log32C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若将函数y=3sin(6x+$\frac{π}{6}$)的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移$\frac{π}{6}$个单位长度,得到函数y=f(x)的图象,若y=f(x)+a在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有两个不同的零点,则实数a的取值范围是(  )
A.[-3,$\frac{3}{2}$]B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[$\frac{3}{2}$,3]D.(-3,-$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,将抛物线C1:y=$\frac{1}{2}$x2+2x沿x轴对称后,向右平移3个单位,再向下平移5个单位,得到抛物线C2,若抛物线C1的顶点为A,点P是抛物线C2上一点,则△POA的面积的最小值为(  )
A.3B.3.5C.4D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|等于(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.12D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设U=R,A={x|x<1},B={x|x≥m},若∁UA⊆B,则实数m的范围是m≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2-2,对?x1∈[1,2],?x2∈[3,4],若f(x2)+a≥|f(x1)|恒成立,则实数a的取值范围是[-12,+∞).

查看答案和解析>>

同步练习册答案