精英家教网 > 高中数学 > 题目详情
9.设U=R,A={x|x<1},B={x|x≥m},若∁UA⊆B,则实数m的范围是m≤1.

分析 由于U=R,A={x|x<1},可得∁UA={x|x≥1},又B={x|x≥m},∁UA⊆B,即可得出.

解答 解:∵U=R,A={x|x<1},∴∁UA={x|x≥1},
又B={x|x≥m},∁UA⊆B,
∴m≤1.
则实数m的范围是m≤1,
故答案为:m≤1.

点评 本题考查了集合的运算性质、不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-1),则双曲线的标准方程为(  )
A.$\frac{x^2}{2}$-$\frac{y^2}{2}$=1B.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{2}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点($\frac{1}{2}$,$\frac{\sqrt{6}}{4}$)是等轴双曲线C:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{a}^{2}}$=1上一点,抛物线x2=2py(p>0)的焦点与双曲线C的一个焦点重合.
(1)求抛物线的方程;
(2)若点P是抛物线上的动点,点A,B在x轴上,圆x2+(y-1)2=1内切于△PAB,求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式|2x-log2x|<2x+|log2x|成立,则(  )
A.1<x<2B.0<x<1C.x>1D.x>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数Z满足|Z|=$\sqrt{2}$,Z2的虚部是2.设Z,Z2,Z-Z2在复平面上的对应点分别为A,B,C,则△ABC的面积为4或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.同时具有性质:
①最小正周期是π;
②图象关于直线x=$\frac{π}{3}$对称;
③在区间$[{\frac{5π}{6},π}]$上是单调递增函数”的一个函数可以是(  )
A.$y=cos(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{5π}{6})$C.$y=cos(2x-\frac{π}{3})$D.$y=sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C1、抛物线C2的焦点均在x轴上,且椭圆C1的中心和抛物线C2的顶点均为原点O,从椭圆C1上取两个点.抛物线C2上取一个点.将其坐标记录于表中:
 x 3-2 $\sqrt{2}$
 y-2$\sqrt{3}$ 0 $\frac{\sqrt{6}}{2}$
(Ⅰ)求椭圆C1和抛物线C2的标准方程:
(Ⅱ)直线l:y=kx+m(k≠0)与椭圆C1交于不同的两点M、N.
(i)若线段MN的垂直平分线过点G($\frac{1}{8}$,0),求实数k的取值范围.
(ii)在满足(i)的条件下,且有m≠=1,求△OMN的面积S△OMN

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=cos(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,如果x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),则f(x1+x2)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知P为锐角三角形ABCD的AB边上一点,A=60°,AC=4,则|$\overrightarrow{PA}$+3$\overrightarrow{PC}$|的最小值为(  )
A.4$\sqrt{3}$B.4$\sqrt{7}$C.6D.6$\sqrt{3}$

查看答案和解析>>

同步练习册答案