1£®ÒÑÖªÍÖÔ²C1¡¢Å×ÎïÏßC2µÄ½¹µã¾ùÔÚxÖáÉÏ£¬ÇÒÍÖÔ²C1µÄÖÐÐĺÍÅ×ÎïÏßC2µÄ¶¥µã¾ùΪԭµãO£¬´ÓÍÖÔ²C1ÉÏÈ¡Á½¸öµã£®Å×ÎïÏßC2ÉÏȡһ¸öµã£®½«Æä×ø±ê¼Ç¼ÓÚ±íÖУº
 x 3-2 $\sqrt{2}$
 y-2$\sqrt{3}$ 0 $\frac{\sqrt{6}}{2}$
£¨¢ñ£©ÇóÍÖÔ²C1ºÍÅ×ÎïÏßC2µÄ±ê×¼·½³Ì£º
£¨¢ò£©Ö±Ïßl£ºy=kx+m£¨k¡Ù0£©ÓëÍÖÔ²C1½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£®
£¨i£©ÈôÏß¶ÎMNµÄ´¹Ö±Æ½·ÖÏß¹ýµãG£¨$\frac{1}{8}$£¬0£©£¬ÇóʵÊýkµÄȡֵ·¶Î§£®
£¨ii£©ÔÚÂú×㣨i£©µÄÌõ¼þÏ£¬ÇÒÓÐm¡Ù=1£¬Çó¡÷OMNµÄÃæ»ýS¡÷OMN£®

·ÖÎö £¨¢ñ£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬Å×ÎïÏߵķ½³ÌÉèΪy2=mx£¬£¨m¡Ù0£©£¬¿ÉµÃµã£¨-2£¬0£©ºÍµã£¨$\sqrt{2}$£¬$\frac{\sqrt{6}}{2}$£©ÔÚÍÖÔ²ÉÏ´úÈë½âµÃa£¬b£¬¼´¿ÉµÃµ½ËùÇóÍÖÔ²·½³Ì£»ÔÙ½«µã£¨3£¬-2$\sqrt{3}$£©´úÈëÅ×ÎïÏߵķ½³Ì£¬¿ÉµÃm£¬½ø¶øµÃµ½Å×ÎïÏߵķ½³Ì£»
£¨¢ò£©£¨i£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$£¬ÏûÈ¥y²¢ÕûÀíµÃ£¨3+4k2£©x2+8kmx+4m2-12=0£¬ÓÉÖ±Ïßy=kx+mÓëÍÖÔ²ÓÐÁ½¸ö½»µã£¬Öªm2£¼4k2+3£®ÓÖx1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬ÖªMNÖеãPµÄ×ø±ê£¬ÓÉ´ËÄÜÇó³ökµÄ·¶Î§£»
£¨ii£©ÔËÓÃÏÒ³¤¹«Ê½¿ÉµÃ|MN|£¬ÇóµÃµãOµ½Ö±ÏßMNµÄ¾àÀ룬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇó£®

½â´ð ½â£º£¨I£©ÓÉÌâÒâÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
Å×ÎïÏߵķ½³ÌÉèΪy2=mx£¬£¨m¡Ù0£©£¬
ÓÉËù¸øµÄ×ø±ê¿ÉµÃµã£¨-2£¬0£©ÔÚÍÖÔ²ÉÏ£¬
¼´ÓÐa=2£¬ÔÚÍÖÔ²ÉϵĵãµÄºá×ø±êÔÚ[-2£¬2]ÄÚ£¬
Ôòµã£¨$\sqrt{2}$£¬$\frac{\sqrt{6}}{2}$£©ÔÚÍÖÔ²ÉÏ£¬ÓÐ$\frac{2}{4}$+$\frac{6}{4{b}^{2}}$=1£¬
½âµÃb=$\sqrt{3}$£¬ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
Óɵ㣨3£¬-2$\sqrt{3}$£©ÔÚÅ×ÎïÏßÉÏ£¬¿ÉµÃ12=3m£¬
½âµÃm=4£¬ÔòÅ×ÎïÏߵķ½³ÌΪy2=4x£»
£¨¢ò£©£¨i£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$£¬ÏûÈ¥y²¢ÕûÀíµÃ
£¨3+4k2£©x2+8kmx+4m2-12=0£¬
Ö±Ïßy=kx+mÓëÍÖÔ²ÓÐÁ½¸ö½»µã£¬¿ÉµÃ
¡÷=£¨8km£©2-4£¨3+4k2£©£¨4m2-12£©£¾0£¬¼´m2£¼4k2+3£¬¢Ù
ÓÖx1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$£¬
MNÖеãPµÄ×ø±êΪ£¨-$\frac{4km}{3+4{k}^{2}}$£¬$\frac{3m}{3+4{k}^{2}}$£©£¬
ÉèMNµÄ´¹Ö±Æ½·ÖÏßl'·½³Ì£ºy=-$\frac{1}{k}$£¨x-$\frac{1}{8}$£©£®
ÓÉPÔÚl'ÉÏ£¬¿ÉµÃ$\frac{3m}{3+4{k}^{2}}$=-$\frac{1}{k}$£¨-$\frac{4km}{3+4{k}^{2}}$-$\frac{1}{8}$£©£¬¼´4k2+8km+3=0£¬
¿ÉµÃm=-$\frac{3+4{k}^{2}}{8k}$£¬
½«ÉÏʽ´úÈë¢ÙµÃ$\frac{£¨3+4{k}^{2}£©^{2}}{64{k}^{2}}$£¼4k2+3£¬
»¯Îªk2£¾$\frac{1}{20}$£¬¼´k£¾$\frac{\sqrt{5}}{10}$»òk£¼-$\frac{\sqrt{5}}{10}$£¬
ÔòkµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-$\frac{\sqrt{5}}{10}$£©¡È£¨$\frac{\sqrt{5}}{10}$£¬+¡Þ£©£»
£¨ii£©ÓÉ£¨i£©¿ÉµÃ|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨3+4{k}^{2}£©^{2}}-\frac{4£¨4{m}^{2}-12£©}{3+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{3}\sqrt{3+4{k}^{2}-{m}^{2}}}{3+4{k}^{2}}$£¬
ÓÖOµ½Ö±ÏßMNµÄ¾àÀëΪd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬¿ÉµÃ
¡÷OMNµÄÃæ»ýΪS¡÷OMN=$\frac{1}{2}$d•|MN|=$\frac{1}{2}$|m|•$\frac{4\sqrt{3}\sqrt{3+4{k}^{2}-{m}^{2}}}{3+4{k}^{2}}$
=$\frac{1}{2}$•|-$\frac{3+4{k}^{2}}{8k}$|•$\frac{4\sqrt{3}\sqrt{3+4{k}^{2}-\frac{£¨3+4{k}^{2}£©^{2}}{64{k}^{2}}}}{3+4{k}^{2}}$£¬
»¯¼ò¿ÉµÃS¡÷OMN=$\frac{\sqrt{3}}{32}$•$\frac{\sqrt{£¨3+4{k}^{2}£©£¨60{k}^{2}-3£©}}{{k}^{2}}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²ºÍÅ×ÎïÏߵķ½³ÌµÄÇ󷨣¬×¢ÒâÔËÓôý¶¨ÏµÊý·¨£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÒÔ¼°Öеã×ø±ê¹«Ê½ºÍÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÉèÍÖÔ²$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1µÄ×ó½¹µãΪF1£¬ÓÒ½¹µãF2£¬Ö±Ïßl1¹ýµãF1ÇÒ´¹Ö±ÓÚÍÖÔ²µÄ³¤Öᣬ¶¯Ö±Ïßl2´¹Ö±l1ÓÚµãP£¬Ïß¶ÎPF2´¹Ö±Æ½·ÖÏß½»l2ÓÚµãM£®
£¨1£©ÇóµãMµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©ÈôµãAµÄ×ø±êΪ£¨2£¬4£©£¬Ö±Ïßl£ºx=ky+2£¨k¡ÊR£©£¬ÓëÇúÏßEÏཻÓÚB£¬CÁ½µã£¬Ö±ÏßAB£¬AC·Ö±ð½»Ö±Ïßl1ÓÚµãS¡¢T£¬ÊÔÅжÏÒÔÏß¶ÎSTΪֱ¾¶µÄÔ²ÊÇ·ñºã¹ýÁ½¸ö¶¨µã£¿ÈôÊÇ£¬ÇóÕâÁ½¸ö¶¨µãµÄ×ø±ê£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Æ½ÃæÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬$\overrightarrow{a}$=£¨2£¬0£©£¬|$\overrightarrow{b}$|=1£¬Ôò|$\overrightarrow{a}$+2$\overrightarrow{b}$|µÈÓÚ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®2$\sqrt{3}$C£®12D£®$\sqrt{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÉèU=R£¬A={x|x£¼1}£¬B={x|x¡Ým}£¬Èô∁UA⊆B£¬ÔòʵÊýmµÄ·¶Î§ÊÇm¡Ü1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÎªÁ˵÷²éij³§¹¤ÈËÉú²úijÖÖ²úÆ·µÄÄÜÁ¦£¬Ëæ»ú³é²éÁË20λ¹¤ÈËijÌìÉú²ú¸Ã²úÆ·µÄÊýÁ¿£®²úÆ·ÊýÁ¿µÄ·Ö×éÇø¼äΪ[45£¬55£©£¬[55£¬65£©£¬[65£¬75£©£¬[75£¬85£©£¬[85£¬95£©Óɴ˵õ½ÆµÂÊ·Ö²¼Ö±·½Í¼Èçͼ£®Ôò²úÆ·ÊýÁ¿Î»ÓÚ[55£¬65£©·¶Î§Ä򵀮µÂÊΪ0.4£»Õâ20Ãû¹¤ÈËÖÐÒ»ÌìÉú²ú¸Ã²úÆ·ÊýÁ¿ÔÚ[55£¬75£©µÄÈËÊýÊÇ13£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬¶¯µãP£¬Q´ÓµãA£¨3£¬0£©³ö·¢ÈÆ¡ÑO×÷Ô²ÖÜÔ˶¯£¬ÈôµãM°´ÄæÊ±Õë·½ÏòÿÃëÖÓת$\frac{¦Ð}{3}$rad£¬µãN°´Ë³Ê±Õë·½ÏòÿÃëÖÓת$\frac{¦Ð}{6}$rad£®Ôòµ±M¡¢NµÚÒ»´ÎÏàÓöʱ£¬µãMת¹ýµÄ»¡³¤Îª4¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªa=log0.23£¬b=£¨¦Ð-3£©-1£¬c=2-1£»Ôòa£¬b£¬c´ÓСµ½´óÅÅÁÐÊÇa£¼c£¼b£®£¨Óá°£¼¡±Á¬½Ó£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=x2-2£¬¶Ô?x1¡Ê[1£¬2]£¬?x2¡Ê[3£¬4]£¬Èôf£¨x2£©+a¡Ý|f£¨x1£©|ºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-12£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãÓë¶Ô³ÆÖá´¹Ö±µÄÖ±ÏßÓë½¥½üÏß½»ÓÚA£¬BÁ½µã£¬Èô¡÷OABµÄÃæ»ýΪ$\frac{\sqrt{13}bc}{3}$£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}}{2}$B£®$\frac{\sqrt{5}}{3}$C£®$\frac{\sqrt{13}}{2}$D£®$\frac{\sqrt{13}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸