| x | 3 | -2 | $\sqrt{2}$ |
| y | -2$\sqrt{3}$ | 0 | $\frac{\sqrt{6}}{2}$ |
·ÖÎö £¨¢ñ£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬Å×ÎïÏߵķ½³ÌÉèΪy2=mx£¬£¨m¡Ù0£©£¬¿ÉµÃµã£¨-2£¬0£©ºÍµã£¨$\sqrt{2}$£¬$\frac{\sqrt{6}}{2}$£©ÔÚÍÖÔ²ÉÏ´úÈë½âµÃa£¬b£¬¼´¿ÉµÃµ½ËùÇóÍÖÔ²·½³Ì£»ÔÙ½«µã£¨3£¬-2$\sqrt{3}$£©´úÈëÅ×ÎïÏߵķ½³Ì£¬¿ÉµÃm£¬½ø¶øµÃµ½Å×ÎïÏߵķ½³Ì£»
£¨¢ò£©£¨i£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$£¬ÏûÈ¥y²¢ÕûÀíµÃ£¨3+4k2£©x2+8kmx+4m2-12=0£¬ÓÉÖ±Ïßy=kx+mÓëÍÖÔ²ÓÐÁ½¸ö½»µã£¬Öªm2£¼4k2+3£®ÓÖx1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬ÖªMNÖеãPµÄ×ø±ê£¬ÓÉ´ËÄÜÇó³ökµÄ·¶Î§£»
£¨ii£©ÔËÓÃÏÒ³¤¹«Ê½¿ÉµÃ|MN|£¬ÇóµÃµãOµ½Ö±ÏßMNµÄ¾àÀ룬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇó£®
½â´ð ½â£º£¨I£©ÓÉÌâÒâÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
Å×ÎïÏߵķ½³ÌÉèΪy2=mx£¬£¨m¡Ù0£©£¬
ÓÉËù¸øµÄ×ø±ê¿ÉµÃµã£¨-2£¬0£©ÔÚÍÖÔ²ÉÏ£¬
¼´ÓÐa=2£¬ÔÚÍÖÔ²ÉϵĵãµÄºá×ø±êÔÚ[-2£¬2]ÄÚ£¬
Ôòµã£¨$\sqrt{2}$£¬$\frac{\sqrt{6}}{2}$£©ÔÚÍÖÔ²ÉÏ£¬ÓÐ$\frac{2}{4}$+$\frac{6}{4{b}^{2}}$=1£¬
½âµÃb=$\sqrt{3}$£¬ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
Óɵ㣨3£¬-2$\sqrt{3}$£©ÔÚÅ×ÎïÏßÉÏ£¬¿ÉµÃ12=3m£¬
½âµÃm=4£¬ÔòÅ×ÎïÏߵķ½³ÌΪy2=4x£»
£¨¢ò£©£¨i£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$£¬ÏûÈ¥y²¢ÕûÀíµÃ
£¨3+4k2£©x2+8kmx+4m2-12=0£¬
Ö±Ïßy=kx+mÓëÍÖÔ²ÓÐÁ½¸ö½»µã£¬¿ÉµÃ
¡÷=£¨8km£©2-4£¨3+4k2£©£¨4m2-12£©£¾0£¬¼´m2£¼4k2+3£¬¢Ù
ÓÖx1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$£¬
MNÖеãPµÄ×ø±êΪ£¨-$\frac{4km}{3+4{k}^{2}}$£¬$\frac{3m}{3+4{k}^{2}}$£©£¬
ÉèMNµÄ´¹Ö±Æ½·ÖÏßl'·½³Ì£ºy=-$\frac{1}{k}$£¨x-$\frac{1}{8}$£©£®
ÓÉPÔÚl'ÉÏ£¬¿ÉµÃ$\frac{3m}{3+4{k}^{2}}$=-$\frac{1}{k}$£¨-$\frac{4km}{3+4{k}^{2}}$-$\frac{1}{8}$£©£¬¼´4k2+8km+3=0£¬
¿ÉµÃm=-$\frac{3+4{k}^{2}}{8k}$£¬
½«ÉÏʽ´úÈë¢ÙµÃ$\frac{£¨3+4{k}^{2}£©^{2}}{64{k}^{2}}$£¼4k2+3£¬
»¯Îªk2£¾$\frac{1}{20}$£¬¼´k£¾$\frac{\sqrt{5}}{10}$»òk£¼-$\frac{\sqrt{5}}{10}$£¬
ÔòkµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-$\frac{\sqrt{5}}{10}$£©¡È£¨$\frac{\sqrt{5}}{10}$£¬+¡Þ£©£»
£¨ii£©ÓÉ£¨i£©¿ÉµÃ|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨3+4{k}^{2}£©^{2}}-\frac{4£¨4{m}^{2}-12£©}{3+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{3}\sqrt{3+4{k}^{2}-{m}^{2}}}{3+4{k}^{2}}$£¬
ÓÖOµ½Ö±ÏßMNµÄ¾àÀëΪd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬¿ÉµÃ
¡÷OMNµÄÃæ»ýΪS¡÷OMN=$\frac{1}{2}$d•|MN|=$\frac{1}{2}$|m|•$\frac{4\sqrt{3}\sqrt{3+4{k}^{2}-{m}^{2}}}{3+4{k}^{2}}$
=$\frac{1}{2}$•|-$\frac{3+4{k}^{2}}{8k}$|•$\frac{4\sqrt{3}\sqrt{3+4{k}^{2}-\frac{£¨3+4{k}^{2}£©^{2}}{64{k}^{2}}}}{3+4{k}^{2}}$£¬
»¯¼ò¿ÉµÃS¡÷OMN=$\frac{\sqrt{3}}{32}$•$\frac{\sqrt{£¨3+4{k}^{2}£©£¨60{k}^{2}-3£©}}{{k}^{2}}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²ºÍÅ×ÎïÏߵķ½³ÌµÄÇ󷨣¬×¢ÒâÔËÓôý¶¨ÏµÊý·¨£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÒÔ¼°Öеã×ø±ê¹«Ê½ºÍÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2$\sqrt{2}$ | B£® | 2$\sqrt{3}$ | C£® | 12 | D£® | $\sqrt{10}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{\sqrt{5}}{2}$ | B£® | $\frac{\sqrt{5}}{3}$ | C£® | $\frac{\sqrt{13}}{2}$ | D£® | $\frac{\sqrt{13}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com