精英家教网 > 高中数学 > 题目详情
13.已知a=log0.23,b=(π-3)-1,c=2-1;则a,b,c从小到大排列是a<c<b.(用“<”连接)

分析 由于a=log0.23<0,b=(π-3)-1>1,c=2-1=$\frac{1}{2}$,即可得出大小关系.

解答 解:∵a=log0.23<0,b=(π-3)-1>1,c=2-1=$\frac{1}{2}$,
∴a<c<b,
故答案为:a<c<b.

点评 本题考查了对数函数与指数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,A地到机场共有两条路径L1和L2,L1虽然路程较短,但经过部分城区,容易堵车;L2道路较为畅通,但绕行距离长.为了给A地的人去机场提供帮助,现随机抽取1000位从A地到达机场的人进行调查,调查结果如表:
所用时间(分钟)10~2020~3030~4040~5050~60
选择L1的人数60120180120120
选择L2的人数04016016040
(Ⅰ)试估计40分钟内不能从A地赶到机场的概率;
(Ⅱ)现甲、乙两人分别有40分钟和50分钟时间用于赶往机场,为了尽最大可能在允许的时间内赶到机场,试通过计算说明,他们应如何选择各自的路径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数Z满足|Z|=$\sqrt{2}$,Z2的虚部是2.设Z,Z2,Z-Z2在复平面上的对应点分别为A,B,C,则△ABC的面积为4或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C1、抛物线C2的焦点均在x轴上,且椭圆C1的中心和抛物线C2的顶点均为原点O,从椭圆C1上取两个点.抛物线C2上取一个点.将其坐标记录于表中:
 x 3-2 $\sqrt{2}$
 y-2$\sqrt{3}$ 0 $\frac{\sqrt{6}}{2}$
(Ⅰ)求椭圆C1和抛物线C2的标准方程:
(Ⅱ)直线l:y=kx+m(k≠0)与椭圆C1交于不同的两点M、N.
(i)若线段MN的垂直平分线过点G($\frac{1}{8}$,0),求实数k的取值范围.
(ii)在满足(i)的条件下,且有m≠=1,求△OMN的面积S△OMN

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f0(x)=sinx-cosx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn+1(x)=f′n(x),n∈N,则${f_{2013}}(\frac{π}{3})$=$\frac{{1+\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=cos(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,如果x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),则f(x1+x2)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线C:y2=2px(x>0)的焦点为F,P为C上一点,若|PF|=4,点P到y轴的距离等于3,则点F的坐标为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{1}{x}$+x2的单调区间为单调减区间为(-∞,0),(0,$\frac{\root{3}{4}}{2}$),单调增区间为[$\frac{\root{3}{4}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2|x|+cosx-π,则不等式(x-2)f(x)>0的解集是:(2,+∞)∪(-$\frac{π}{2}$,$\frac{π}{2}$).

查看答案和解析>>

同步练习册答案