分析 通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到函数的解析式,利用函数的图象与函数的对称性求出f(x1+x2)即可得解.
解答 解:∵由图知,T=2×($\frac{π}{3}$+$\frac{π}{6}$)=π=$\frac{2π}{ω}$,ω>0,
∴ω=2,
∵函数的图象经过(-$\frac{π}{6}$,0),可得:0=sin(-$\frac{π}{6}$×2+φ),有:-$\frac{π}{6}$×2+φ=kπ+$\frac{π}{2}$,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴φ=-$\frac{π}{6}$,
∴f(x)=cos(2x-$\frac{π}{6}$),
∵f(x1)=f(x2),可得x1+x2=2×$\frac{π}{12}$=$\frac{π}{6}$,
∴f(x1+x2)=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.
点评 本题考查三角函数的解析式的求法,函数的图象的应用,函数的对称性,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | log23 | B. | log32 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com