精英家教网 > 高中数学 > 题目详情

【题目】在平面中,△ABC的角C的内角平分线CE分△ABC面积所成的比 = .将这个结论类比到空间:在三棱锥A﹣BCD中,平面DEC平分二面角A﹣CD﹣B且与AB交于E,则类比的结论为 =

【答案】 ?=
【解析】解:在平面中△ABC的角C的内角平分线CE分△ABC面积所成的比 =
将这个结论类比到空间:在三棱锥A﹣BCD中,平面DEC平分二面角A﹣CD﹣B且与AB交于E,
则类比的结论为根据面积类比体积,长度类比面积可得: =
所以答案是: =
【考点精析】认真审题,首先需要了解类比推理(根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个焦点与抛物线 的焦点F重合,且椭圆短轴的两个端点与F构成正三角形.
(1)求椭圆的方程;
(2)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使 恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是(

A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是边长为2的正三角形ABC边BC上的动点,则 的值(
A.是定值6
B.最大值为8
C.最小值为2
D.与P点位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)的定义域为(﹣a,0)∪(0,a)(0<a<1),其图象上任意一点P(x,y)满足x2+y2=1,则给出以下四个命题:①函数y=f(x)一定是偶函数;②函数y=f(x)可能是奇函数;③函数y=f(x)在(0,a)上单调递增④若函数y=f(x)是偶函数,则其值域为(a2 , 1)其中正确的命题个数为(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线E上任意一点P到两个定点 的距离之和为4,
(1)求动点P的方程;
(2)设过(0,﹣2)的直线l与曲线E交于C、D两点,且 (O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自201611日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得要不要再生一个生二孩能休多久产假等问题成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:

产假安排(单位:周)

14

15

16

17

18

有生育意愿家庭数

4

8

16

20

26

1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?

2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.

求两种安排方案休假周数和不低于32周的概率;

如果用表示两种方案休假周数之和.求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的零点.

1)求的取值范围;

2)记两个零点分别为已知若不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案