【题目】某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照,,,,的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在,的数据).
(1)求样本容量n和频率分布直方图中x、y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的2名同学来自不同组的概率.
科目:高中数学 来源: 题型:
【题目】椭圆的离心率为, 过点, 记椭圆的左顶点为.
(1)求椭圆的方程;
(2)设垂直于轴的直线交椭圆于两点, 试求面积的最大值;
(3)过点作两条斜率分别为的直线交椭圆于两点,且, 求证: 直线恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点和直线:,圆C与直线相切,并且圆心C关于点的对称点在圆C上,直线与轴相交于点.
(Ⅰ)求圆心C的轨迹E的方程;
(Ⅱ)过点且与直线不垂直的直线与圆心C的轨迹E相交于点A、B,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.
上图中,已知课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取的学生作为研究样本组(以下简称“组M”).
(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.
(ⅰ)设随机变量表示选出的4名同学中选择课程的人数,求随机变量的分布列;
(ⅱ)设随机变量表示选出的4名同学参加科学营的费用总和,求随机变量的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比数列.
(1)求数列{an}的通项公式;
(2)设{ }是首项为1公比为2的等比数列,求数列{bn}前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函数f(x)的单调区间;
(2)当m≥1时,讨论函数f(x)与g(x)图象的交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的极坐标方程为ρsin(θ+ )= .
(1)在极坐标系下写出θ=0和θ= 时该直线上的两点的极坐标,并画出该直线;
(2)已知Q是曲线ρ=1上的任意一点,求点Q到直线l的最短距离及此时Q的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,设ai=2m(i∈N* , 3m﹣2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12 , 则满足Si∈[1000,3000]的i的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.
(1)按下列要求建立函数关系;
(i)设AN=x米,将S表示为x的函数;
(ii)设∠BMC=θ(rad),将S表示为θ的函数.
(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com