精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知点和直线,圆C与直线相切,并且圆心C关于点的对称点在圆C上,直线轴相交于点

(Ⅰ)求圆心C的轨迹E的方程;

(Ⅱ)过点且与直线不垂直的直线与圆心C的轨迹E相交于点A、B,面积的取值范围.

【答案】(1)(2)面积的取值范围为

【解析】试题分析:(Ⅰ)据题意,利用点到直线的距离公式,可求得关于圆心坐标的方程即为圆心的轨迹方程;(Ⅱ)设直线的方程为,与椭圆方程联立,消去,利用韦达定理与弦长公式,可得的面积,关于的关系式,再利用函数的单调性可得面积的取值范围.

试题解析:解:(Ⅰ)设圆心,则圆心到点F的距离等于它到直线距离的一半

化简得,圆心的轨迹方程为

(Ⅱ)设直线的方程为

,设,则

面积

,设

单调递增,

所以面积的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x﹣ ,g(x)= sin2x.
(1)求函数f(x)与g(x)图象交点的横坐标;
(2)若函数φ(x)= ﹣f(x)﹣g(x),将函数φ(x)图象上的点纵坐标不变,横坐标扩大为原来的4倍,再将所得函数图象向右平移 个单位,得到函数h(x),求h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,一条宽为1km的两平行河岸有村庄A和供电站C,村庄BAC的直线距离都是2kmBC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄AB供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km

(1)已知村庄AB原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元/km.现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值;

(2)如图②,点E在线段AD上,且铺设电缆的线路为CEEAEB.若∠DCEθ(0≤θ),试用θ表示出总施工费用y (万元)的解析式,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.

为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:

年龄

受访人数

5

6

15

9

10

5

支持发展

共享单车人数

4

5

12

9

7

3

(Ⅰ)由以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;

年龄低于35岁

年龄不低于35岁

合计

支持

不支持

合计

(Ⅱ)若对年龄在的被调查人中各随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为,求随机变量的分布列及数学期望.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:x>0,x+ >a;命题q:x0∈R,x02﹣2ax0+1≤0.若¬q为假命题,p∧q为假命题,则求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,两坐标系单位长度相同.已知曲线的极坐标方程为,直线的参数方程为为参数)。

(Ⅰ)将直线的参数方程化为普通方程,曲线的极坐标方程化为直角坐标方程

(Ⅱ)设曲线上到直线的距离为的点的个数为,求的解析式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥,侧棱,底面三角形为正三角形,边长为,顶点在平面上的射影为,有,且.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)线段上是否存在点使得⊥平面,如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次环保知识竞赛活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容量n和频率分布直方图中x、y的值;

(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的2名同学来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若关于的不等式上恒成立,求的取值范围;

(2)设函数,若上存在极值,求的取值范围,并判断极值的正负.

查看答案和解析>>

同步练习册答案