分析 (1)由余弦定理,三角形内角和定理,两角和的正弦函数公式化简已知等式,可得sinC(1+2cosA)=0,
结合sinC≠0,可得cosA=-$\frac{1}{2}$,结合范围A∈(0,π),即可求A的值.
(2)由正弦定理可得:b=$\frac{asinB}{sinA}=\frac{2\sqrt{3}sinB}{3}$,c=$\frac{2\sqrt{3}sinC}{3}$,利用三角函数恒等变换的应用可得△ABC的周长l=1+$\frac{2\sqrt{3}}{3}$sin(B+$\frac{π}{3}$),由范围B∈(0,$\frac{π}{3}$),可求范围B+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{2π}{3}$),利用正弦函数的图象和性质即可得解周长的求值范围.
解答 (本题满分为12分)
解:(1)∵(a2+b2-c2)sinA=ab(sinC+2sinB),
∴由余弦定理可得:2abcosCsinA=ab(sinC+2sinB),
∴2cosCsinA=sinC+2sin(A+C),化简可得:sinC(1+2cosA)=0,
∵sinC≠0,
∴cosA=-$\frac{1}{2}$,
又∵A∈(0,π),
∴A=$\frac{2π}{3}$…(5分)
(2)∵A=$\frac{2π}{3}$,a=1,
∴由正弦定理可得:b=$\frac{asinB}{sinA}=\frac{2\sqrt{3}sinB}{3}$,c=$\frac{2\sqrt{3}sinC}{3}$,
∴△ABC的周长l=a+b+c=1+$\frac{2\sqrt{3}}{3}$sinB+$\frac{2\sqrt{3}}{3}$sinC
=1+$\frac{2\sqrt{3}}{3}$[sinB+sin($\frac{π}{3}$-B)]
=1+$\frac{2\sqrt{3}}{3}$($\frac{1}{2}sinB+\frac{\sqrt{3}}{2}cosB$)
=1+$\frac{2\sqrt{3}}{3}$sin(B+$\frac{π}{3}$),
∵B∈(0,$\frac{π}{3}$),
∴B+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{2π}{3}$),
∴sin(B+$\frac{π}{3}$)∈($\frac{\sqrt{3}}{2}$,1],
∴△ABC的周长l=1+$\frac{2\sqrt{3}}{3}$sin(B+$\frac{π}{3}$)∈(2,1+$\frac{2\sqrt{3}}{3}$]…(12分)
点评 本题主要考查了余弦定理,三角形内角和定理,两角和的正弦函数公式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 3+$\sqrt{7}$ | C. | 8 | D. | 6+2$\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | R | B. | (2015,2016) | C. | (-∞,2016] | D. | (-∞,2016) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (1,+∞) | C. | (0,1] | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}$>$\frac{1}{b}$ | B. | a3>b3 | C. | a2>b2 | D. | a>|b| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2R | B. | R | ||
| C. | 4R | D. | $\frac{1}{2}$R(R为△ABC外接圆半径) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com