精英家教网 > 高中数学 > 题目详情
5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴长为2$\sqrt{3}$,且2a,2b,3c成等比数列.设F1、F2是椭圆的左、右焦点,过F2的直线与y轴右侧椭圆相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△F2PQ面积的最小值.

分析 (Ⅰ)通过椭圆短轴长为2$\sqrt{3}$及2a,2b,3c成等比数列,计算可得椭圆方程;
(Ⅱ)设直线MN的方程为:x=ty+1 (-$\frac{\sqrt{3}}{3}$<t<$\frac{\sqrt{3}}{3}$),代入$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,利用韦达定理,三角形面积公式及换元法计算可得结论.

解答 解:(Ⅰ)因为$b=\sqrt{3}$,所以6ac=12,即ac=2,
又a2-3=c2,所以a2=4,c2=1,
所以椭圆C的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)设直线MN的方程为:x=ty+1 (-$\frac{\sqrt{3}}{3}$<t<$\frac{\sqrt{3}}{3}$),
代入$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1化简得(3t2+4)y2+6ty-9=0,
∴y1+y2=-$\frac{6t}{3{t}^{2}+4}$,y1y2=-$\frac{9}{3{t}^{2}+4}$,△=144(t2+1),
设M(x1,y1),N(x2,y2),
则${l}_{{F}_{1}M}$:y=$\frac{{y}_{1}}{{x}_{1}+1}$(x+1),
令x=4,得P(4,$\frac{5{y}_{1}}{{x}_{1}+1}$),同理Q(4,$\frac{5{y}_{2}}{{x}_{2}+1}$),
所以${S}_{△PQ{F}_{2}}$=$\frac{1}{2}$•3|$\frac{5{y}_{1}}{{x}_{1}+1}$-$\frac{5{y}_{2}}{{x}_{2}+1}$|=$\frac{15}{2}$|$\frac{2({y}_{1}-{y}_{2})}{(t{y}_{1}+2)(t{y}_{2}+2)}$|=180|$\frac{\sqrt{{t}^{2}+1}}{16-9{t}^{2}}$|,
令μ=$\sqrt{{t}^{2}+1}$,则μ∈[1,$\frac{2\sqrt{3}}{3}$),则${S}_{△PQ{F}_{2}}$=180×$\frac{μ}{25-9{μ}^{2}}$,
∵y=$\frac{x}{25-9{x}^{2}}$=$\frac{1}{\frac{25}{x}-9x}$在[1,$\frac{2\sqrt{3}}{3}$)上是增函数,
所以当μ=1,即t=0时,$({S}_{△PQ{F}_{2}})_{min}$=$\frac{45}{4}$.

点评 本题是一道直线与圆锥曲线的综合题,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.若函数f(x)=ax2+8x-6lnx在点M(1,f(1))处的切线方程为y=b
(1)求a,b的值;
(2)求f(x)的单调递增区间;
(3)若对于任意的x∈[1,4],恒有f(x)≤7ln($\frac{e^2}{m}$)+ln(em)成立,求实数m的取值范围(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为矩形PA⊥平面ABCD,AB=PA=1,AD=$\sqrt{3}$,E,F,G分别是BC,PB,AD上的点,且AF⊥PC,AG=2GD.
(1)当BE为何值时,FG∥平面PDE;
(2)当BE为何值时,二面角C-PE-D的平面角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一枚质地均匀的正六面体骰子,六个面上分别刻着1点至6点,一次游戏中,甲、乙二人各掷骰子一次,若甲掷的向上点数比乙大,则甲掷的向上点数的数学期望是$\frac{14}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(理)从0,1,2,3,4这5个数中取3个数,记中位数是ξ,则数学期望E(ξ)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正方形ABCD的边长为2,P是正方形ABCD的外接圆上的动点,则$\overrightarrow{AB}$•$\overrightarrow{AP}$的范围是[-2$\sqrt{2}$+2,2$\sqrt{2}$+2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.实数α,β满足$\left\{\begin{array}{l}{(α-1)^{3}+2007(α-1)=-1}\\{(β-1)^{3}+2007(β-1)=1}\end{array}\right.$,则α+β的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=ax2+(a-1)x+a.
(1)函数f(x)在(-∞,-1)上单调递增,求实数a的取值范围;
(2)函数g(x)=f(x)+$\frac{1-(a-1){x}^{2}}{x}$在(2,3)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从正方体的8个顶点中任选两个顶点相连所得的直线中,相交直线有180对.

查看答案和解析>>

同步练习册答案