精英家教网 > 高中数学 > 题目详情

给定数列
(1)判断是否为有理数,证明你的结论;
(2)是否存在常数.使都成立? 若存在,找出的一个值, 并加以证明; 若不存在,说明理由.

(1) 是无理数 (2) (或等).则对,均有成立.证明略.

解析试题分析:(1) 设是无理数, 利用反证法推出矛盾即可;(2)先设然后得到,用放缩法证出,再借助错位相减法得<3,即对,均有成立.
解:(1)是无理数, 若不然,设.
必为有理数,这与是无理数矛盾.
(2)设
.
于是







.
.
从而可取(或等).则对,
均有成立.
考点:反证法;错位相减法;放缩法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知an=(n="1," 2,  ),则S99=a1+a2+ +a99           

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足对任意的,都有.
(1)求的值;
(2)求数列的通项公式
(3)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的首项,前项和为,且成等差数列,其中.
(1)求数列的通项公式;
(2)数列满足:,记数列的前项和为,求及数列的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;
(2)设bn+…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为,满足
(1)求的值;
(2)猜想的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中),区间.
(1)求区间的长度(注:区间的长度定义为);
(2)把区间的长度记作数列,令,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的首项,
求数列的通项公式;
的前项和为,若的最小值为,求的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为
(1)求证:数列是等比数列;
(2)若,求实数的取值范围.

查看答案和解析>>

同步练习册答案