精英家教网 > 高中数学 > 题目详情
9.如图,四棱锥P-ABCD中,PA⊥PD,AD⊥CD,PA=PD,AD∥BC,AB=AD=2BC=2,E是棱PD的中点,设二面角P-AD-B的值为θ.
(Ⅰ)当θ=$\frac{π}{2}$时,求证:AP⊥CE;
(Ⅱ)当θ=$\frac{π}{6}$时,求二面角P-AB-D的余弦值.

分析 (Ⅰ)取AD的中点O,连结PO,证明CD⊥平面PAD,可得CD⊥AP,再证明PA⊥平面PCD,即可证明AP⊥CE;
(Ⅱ)当θ=$\frac{π}{6}$时,建立坐标系,求出平面PAB的法向量、平面ABCD的法向量,即可求二面角P-AB-D的余弦值.

解答 (Ⅰ)证明:取AD的中点O,连结PO,则
∵PA=PD,O为AD中点,∴PO⊥AD.
又二面角P-AD-B的值为$\frac{π}{2}$,
∴PO⊥面ABCD,∴PO⊥CD,
∴CD⊥AD.
∵AD∩PO=O,
∴CD⊥平面PAD.            …(2分)
又AP?平面PAD,∴CD⊥AP.  …(4分)
又PA⊥PD,
∵PD∩CD=D,
∴PA⊥平面PCD.
∴AP⊥CE.                     …(7分)
(Ⅱ)解:由题意知:∠POB=$\frac{π}{6}$.
如图,建立空间直角坐标系O-xyz,
则A(0,-1,0),B($\sqrt{3}$,0,0),D(0,1,0),P($\frac{\sqrt{3}}{2}$,0,$\frac{1}{2}$).    …(9分)
∴$\overrightarrow{BP}$=(-$\frac{\sqrt{3}}{2}$,0,$\frac{1}{2}$),$\overrightarrow{AB}$=($\sqrt{3}$,1,0),
设平面PAB的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\sqrt{3}x+y=0}\\{-\frac{\sqrt{3}}{2}x+\frac{1}{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-$\sqrt{3}$,$\sqrt{3}$).…(11分)
而平面ABCD的法向量为$\overrightarrow{m}$=(0,0,1).              …(12分)
设二面角P-AB-D的平面角为α.
则cosα=$\frac{\sqrt{3}}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$.…(14分)

点评 本题考查线面垂直的判定与性质,考查二面角的平面角,考查向量方法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.等比数列{an}中,若a1+a2+a3=7,a4+a5+a6=56,求a7+a8+a9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$和椭圆$\frac{x^2}{25-m}+\frac{y^2}{9-m}=1$具有(  )
A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长、短轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,P是椭圆上一点,|PF1|=|F1F2|且cos∠PF2F1=$\frac{2}{3}$,则椭圆离心率为(  )
A.$\frac{1}{2}$B.$\frac{3}{7}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{x^2}{2}+{y^2}=1$的离心率等于(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-$\sqrt{3}$,0),过点F的直线交椭圆与A,B两点,当直线AB垂直x轴时,|AB|=$\frac{a}{2}$.
(1)求该椭圆方程;
(2)若斜率存在且不为0的动线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点(如图所示),记△GFD的面积为S1,△OED的面积为S2,求$\frac{{S}_{1}{S}_{2}}{{{S}_{1}}^{2}+{{S}_{2}}^{2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(3,1),其左、右焦点分别为F1、F2,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=-6,则椭圆E的离心率是(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,给出下列四个函数:
①f(x)=sin$\frac{π}{2}$x;②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=lnx+1.
其中存在“可等域区间”的“可等域函数”为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列{an}中,任意的n∈N*,an+1+an=3n+1,则公比q等于(  )
A.2B.3C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步练习册答案