精英家教网 > 高中数学 > 题目详情
20.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$和椭圆$\frac{x^2}{25-m}+\frac{y^2}{9-m}=1$具有(  )
A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长、短轴

分析 分别计算出各自的焦距,结合焦点均在x轴上,即得结论.

解答 解:∵椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的焦距为:2$\sqrt{25-9}$=8,
圆$\frac{x^2}{25-m}+\frac{y^2}{9-m}=1$的焦距为:2$\sqrt{(25-m)-(9-m)}$=8,
椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$和椭圆$\frac{x^2}{25-m}+\frac{y^2}{9-m}=1$的焦点均在x轴上,
∴两椭圆有相同的焦点,
故选:B.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,角A,B,C对边分别是a,b,c,若B为钝角,且$\frac{1}{sinA}+\frac{1}{cosA}=2\sqrt{2}$.
(Ⅰ) 求角A;
(Ⅱ) 若$\overrightarrow{AB}•\overrightarrow{AC}=3$,且$a=\sqrt{5}$,求b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在数列{an}中,an>0,2$\sqrt{{S}_{n}}$=an+1(n∈N+),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-$\frac{a}{x}$-2lnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1,x2,且x1<x2
①求a的取值范围;
②证明:f(x2)<x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+mx(m>0),其中e=2.71828…为自然对数的底数.
(1)若函数f(x)的图象经过点($\frac{1}{e}$,0),求m的值;
(2)试判断函数f(x)的单调性,并予以说明;
(3)试确定函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设椭圆C1的离心率为$\frac{5}{13}$,焦点在x轴上,且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{x^2}{169}-\frac{y^2}{144}=1$C.$\frac{x^2}{16}+\frac{y^2}{9}=1$D.$\frac{x^2}{16}-\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆E:$\frac{{x}^{2}}{4}$+y2=1的左、右焦点分别为F1,F2,左、右顶点分别为A,B.
(1)若Rt△F1F2C的顶点C在椭圆E上的第一象限内,求点C的坐标;
(2)在定直线l:x=m(m>2)上任取一点P(P不在x轴上),线段PA交椭圆于点Q,若∠PBQ始终为钝角,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,PA⊥PD,AD⊥CD,PA=PD,AD∥BC,AB=AD=2BC=2,E是棱PD的中点,设二面角P-AD-B的值为θ.
(Ⅰ)当θ=$\frac{π}{2}$时,求证:AP⊥CE;
(Ⅱ)当θ=$\frac{π}{6}$时,求二面角P-AB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b∈R,则“$\sqrt{a-1}$>$\sqrt{b-1}$”是“log2a>log2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案