分析 an>0,2$\sqrt{{S}_{n}}$=an+1(n∈N+),平方可得4Sn=$({a}_{n}+1)^{2}$,当n=1时,解得a1.当n≥2时,利用an=Sn-Sn-1可得4an=$({a}_{n}+1)^{2}$-$({a}_{n-1}+1)^{2}$,化简整理利用等差数列的通项公式即可得出.
解答 解:∵an>0,2$\sqrt{{S}_{n}}$=an+1(n∈N+),∴4Sn=$({a}_{n}+1)^{2}$,
当n=1时,$4{a}_{1}=({a}_{1}+1)^{2}$,解得a1=1.
当n≥2时,$4{S}_{n-1}=({a}_{n-1}+1)^{2}$,
两式相减可得:4an=$({a}_{n}+1)^{2}$-$({a}_{n-1}+1)^{2}$,
化为(an+an-1)(an-an-1-2)=0,
∴an-an-1=2,
∴数列{an}是等差数列,首项为1,公差为2.
∴an=1+2(n-1)=2n-1.
点评 本题考查了递推式的应用、等差数列的通项公式,考查了变形能力、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 相同的离心率 | B. | 相同的焦点 | C. | 相同的顶点 | D. | 相同的长、短轴 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com