| A. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | B. | $\frac{x^2}{169}-\frac{y^2}{144}=1$ | C. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ |
分析 通过椭圆方程即得双曲线C2的焦点坐标,利用定义可得结论.
解答 解:由题易知曲线C2即为双曲线,设其方程为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
∵椭圆C1的离心率为$\frac{5}{13}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{5}{13}$,
又∵椭圆C1的焦点在x轴上,且长轴长为26,
∴a=13,b2=a2-52=169-25=144,
∴椭圆C1的方程为:$\frac{x^2}{169}+\frac{y^2}{144}=1$,
∴椭圆C1的焦点坐标分别为:(5,0)、(-5,0),
∴双曲线C2是以(5,0)、(-5,0)为焦点、2a=8的双曲线,
则a=4,c=5,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
即双曲线C2的方程为:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,
故选:D.
点评 本题考查椭圆、双曲线的简单性质,注意解题方法的积累,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 相同的离心率 | B. | 相同的焦点 | C. | 相同的顶点 | D. | 相同的长、短轴 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{7}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com