精英家教网 > 高中数学 > 题目详情
5.设椭圆C1的离心率为$\frac{5}{13}$,焦点在x轴上,且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{x^2}{169}-\frac{y^2}{144}=1$C.$\frac{x^2}{16}+\frac{y^2}{9}=1$D.$\frac{x^2}{16}-\frac{y^2}{9}=1$

分析 通过椭圆方程即得双曲线C2的焦点坐标,利用定义可得结论.

解答 解:由题易知曲线C2即为双曲线,设其方程为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
∵椭圆C1的离心率为$\frac{5}{13}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{5}{13}$,
又∵椭圆C1的焦点在x轴上,且长轴长为26,
∴a=13,b2=a2-52=169-25=144,
∴椭圆C1的方程为:$\frac{x^2}{169}+\frac{y^2}{144}=1$,
∴椭圆C1的焦点坐标分别为:(5,0)、(-5,0),
∴双曲线C2是以(5,0)、(-5,0)为焦点、2a=8的双曲线,
则a=4,c=5,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
即双曲线C2的方程为:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,
故选:D.

点评 本题考查椭圆、双曲线的简单性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.一个四棱锥的四个侧面中,直角三角形的个数最多是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在正数数列{an}中,前n项和Sn满足:Sn=2an-1,
(1)求a1的值;
(2)求{an}的通项公式;
(3)若bn=2log2an-29,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知P是椭圆$\frac{x^2}{4}$+y2=1上一点,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=0(F1、F2分别是左、右焦点),则△F1PF2的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$和椭圆$\frac{x^2}{25-m}+\frac{y^2}{9-m}=1$具有(  )
A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长、短轴

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数m,6,9构成一个等比数列,则圆锥曲线$\frac{x^2}{m}$+y2=1的离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,P是椭圆上一点,|PF1|=|F1F2|且cos∠PF2F1=$\frac{2}{3}$,则椭圆离心率为(  )
A.$\frac{1}{2}$B.$\frac{3}{7}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-$\sqrt{3}$,0),过点F的直线交椭圆与A,B两点,当直线AB垂直x轴时,|AB|=$\frac{a}{2}$.
(1)求该椭圆方程;
(2)若斜率存在且不为0的动线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点(如图所示),记△GFD的面积为S1,△OED的面积为S2,求$\frac{{S}_{1}{S}_{2}}{{{S}_{1}}^{2}+{{S}_{2}}^{2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆:x2+y2=64,圆C与圆O相交,圆心为C(9,0),且圆C上的点与圆O上的点之间的最大距离为21.
(Ⅰ)求圆C的标准方程;
(Ⅱ)在x轴上是否存在定点P,使得过点P的直线l被圆O与圆C截得的弦长d1、d2的比值总等于同一常数λ?若存在,求点P的坐标及λ的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案