精英家教网 > 高中数学 > 题目详情
10.已知a,b∈R,则“$\sqrt{a-1}$>$\sqrt{b-1}$”是“log2a>log2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 分别解出关于$\sqrt{a-1}$>$\sqrt{b-1}$以及log2a>log2b”的a,b的范围,从而得到答案.

解答 解:由$\sqrt{a-1}$>$\sqrt{b-1}$,解得:a>b≥1,
由log2a>log2b解得:a>b>0,
故“$\sqrt{a-1}$>$\sqrt{b-1}$”是“log2a>log2b”的充分不必要条件,
故选:A.

点评 本题考察了充分必要条件,考察二次函数以及对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$和椭圆$\frac{x^2}{25-m}+\frac{y^2}{9-m}=1$具有(  )
A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长、短轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(3,1),其左、右焦点分别为F1、F2,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=-6,则椭圆E的离心率是(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,给出下列四个函数:
①f(x)=sin$\frac{π}{2}$x;②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=lnx+1.
其中存在“可等域区间”的“可等域函数”为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|2x-3|+|2x-1|.
(1)求不等式f(x)≥3的解集;
(2)设m.n∈R,且m+n=1,求证:$\sqrt{2m+1}+\sqrt{2n+1}≤2\sqrt{f(x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆:x2+y2=64,圆C与圆O相交,圆心为C(9,0),且圆C上的点与圆O上的点之间的最大距离为21.
(Ⅰ)求圆C的标准方程;
(Ⅱ)在x轴上是否存在定点P,使得过点P的直线l被圆O与圆C截得的弦长d1、d2的比值总等于同一常数λ?若存在,求点P的坐标及λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,三棱柱ABC-A1B1C1的侧棱垂直于底面,底面边长和侧棱长均为2,D是BC的中点.
(Ⅰ)求证:AD⊥平面B1BCC1
(Ⅱ)求证:A1B∥平面ADC1
(Ⅲ)求三棱锥C1-ADB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列{an}中,任意的n∈N*,an+1+an=3n+1,则公比q等于(  )
A.2B.3C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=(x+sinx)(ex+ae-x)(x∈R)是偶函数,则实数a=-1.

查看答案和解析>>

同步练习册答案