定义:对于各项均为整数的数列,如果(=1,2,3, )为完全平方数,则称数列具有“性质”;不论数列是否具有“性质”,如果存在数列与不是同一数列,且满足下面两个条件:
(1)是的一个排列;
(2)数列具有“性质”,则称数列具有“变换性质”.
给出下面三个数列:
①数列的前项和;
②数列:1,2,3,4,5;
③数列:1,2,3,4,5,6,7,8,9,10,11.
具有“性质”的为 ;具有“变换性质”的为 .
①、②
解析试题分析:对于①,求出数列{an}的通项,验证ai+i=i2(i=1,2,3,…)为完全平方数,可得结论;对于②,数列1,2,3,4,5,具有“变换P性质”,数列{bn}为3,2,1,5,4,具有“P性质”;对于③,因为11,4都只有与5的和才能构成完全平方数,所以1,2,3,…,11,不具有“变换P性质”. 解:对于①,当n≥2时,an=Sn-Sn-1=n2-n,∵a1=0,∴an=n2-n,∴ai+i=i2(i=1,2,3,…)为完全平方数,∴数列{an}具有“P性质”;,对于②,数列1,2,3,4,5,具有“变换P性质”,数列{bn}为3,2,1,5,4,具有“P性质”,∴数列{an}具有“变换P性质”;,对于③,因为11,4都只有与5的和才能构成完全平方数,所以1,2,3,…,11,不具有“变换P性质”.,故答案为:①,②.
考点:新定义
点评:本题考查新定义,考查学生分析解决问题的能力,正确理解新定义是关键.
科目:高中数学 来源: 题型:填空题
如图,将正分割成16个全等的小正三角形,在每个三角形的顶点各放置一个数,使位于同一直线上的点放置的数(当数的个数不少于3时)都分别依次成等差数列,若顶点处的三个数互不相同且和为1,则所有顶点的数之和 .
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
在数列中,如果对任意的,都有(为常数),则称数列为比等差数列,称为比公差.现给出以下命题:①若数列满足,,(),则该数列不是比等差数列;②若数列满足,则数列是比等差数列,且比公差;③等比数列一定是比等差数列,等差数列不一定是比等差数列;④若是等差数列,是等比数列,则数列是比等差数列.
其中所有真命题的序号是_________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com