精英家教网 > 高中数学 > 题目详情

已知数列满足.
(1)若数列是等差数列,求其公差的值;
(2)若数列的首项,求数列的前100项的和.

(1)2;(2)

解析试题分析:(1)设的首项为和公差为,则代入已知条件,利用待定系数法可得关于的方程;(2)通过赋值作差可得,然后确定数列的类型,进行分组求和。
(1)因为数列是等差数列,
所以                 1′
   2′
所以解得
故其公差的值为2.                          5′
(2)由
两式相减,得.                6′
所以数列是首项为,公差为4的等差数列;        7′
数列是首项为,公差为4的等差数列.            8′
又由.
所以
故所求                   11′
所以数列的前100项的和为
  13′
考点:(1)待定系数法的应用;(2)根据递推关系式判断数列的类型;(3)利用分组进行数列求和。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

定义:对于各项均为整数的数列,如果(=1,2,3, )为完全平方数,则称数列具有“性质”;不论数列是否具有“性质”,如果存在数列不是同一数列,且满足下面两个条件:
(1)的一个排列;
(2)数列具有“性质”,则称数列具有“变换性质”.
给出下面三个数列:
①数列的前项和
②数列:1,2,3,4,5;
③数列:1,2,3,4,5,6,7,8,9,10,11.
具有“性质”的为        ;具有“变换性质”的为           .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前n项和记为,点(n,)在曲线)上
(1)求数列的通项公式;
(2)设,求数列的前n项和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若等比数列的前n项和,(1)求实数的值;(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;
(2)设bn+…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列的各项均为正数,且  
(1)求数列的通项公式;
(2)设,求数列的前n项和 
(3)在(2)的条件下,求使恒成立的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,等差数列满足
(1)求数列,数列的通项公式;
(2)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知Sn是数列{an}的前n项和,且anSn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式.
(2)设bnTnbn+1bn+2+…+b2n,是否存在最大的正整数k,使得
对于任意的正整数n,有Tn恒成立?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

数列满足:),且,若数列的前2011项之
和为2012,则前2012项的和等于          

查看答案和解析>>

同步练习册答案