【题目】已知圆经过点,,且它的圆心在直线上.
(Ⅰ)求圆的方程;
(Ⅱ)求圆关于直线对称的圆的方程。
(Ⅲ)若点为圆上任意一点,且点,求线段的中点的轨迹方程.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)
【解析】
试题分析:(Ⅰ)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(Ⅱ)求出N(2,4)关于x-y+3=0的对称点为(1,5),即可得到圆N关于直线x-y+3=0对称的圆的方程;(Ⅲ)首先设出点M的坐标,利用中点得到点D坐标,代入圆的方程整理化简得到的中点M的轨迹方程
试题解析::(Ⅰ)由已知可设圆心N(a,3a-2),又由已知得|NA|=|NB|,
从而有,解得:a=2.
于是圆N的圆心N(2,4),半径.
所以,圆N的方程为.(5分)
(Ⅱ)N(2,4)关于x-y+3=0的对称点为(1,5),
所以圆N关于直线x-y+3=0对称的圆的方程为(9分)
(Ⅲ)设M(x,y),D,则由C(3,0)及M为线段CD的中点得:,解得又点D在圆N:上,所以有,
化简得:.
故所求的轨迹方程为.(13分)
科目:高中数学 来源: 题型:
【题目】已知直线l:与圆O:相交于A,B两个不同的点,且A,B.
(1)当面积最大时,求m的取值,并求出的长度.
(2)判断是否为定值;若是,求出定值的大小;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求函数的单调递增区间;
(2)将函数的图像向左平移个单位后,再将图像上各点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图像,求的最大值及取得最大值时的的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线 的参数方程为(为参数).
(1)直线过且与曲线相切,求直线的极坐标方程;
(2)点与点关于轴对称,求曲线上的点到点的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各名,组成一个小组.
(1)求被选中的概率;
(2)求和不全被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,, 且.
(1)求的值及数列的通项公式;
(2)令, 数列的前项和为, 试比较与的大小;
(3)令, 数列的前项和为, 求证: 对任意, 都有.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com