【题目】已知函数![]()
(1)求函数
的单调递增区间;
(2)将函数
的图像向左平移
个单位后,再将图像上各点的横坐标伸长到原来的
倍,纵坐标不变,得到函数
的图像,求
的最大值及取得最大值时的
的集合.
【答案】(1)
(2)![]()
【解析】试题分析:(1)根据二倍角公式进行化简,得到
,根据正弦函数的性质,可知
,进而得到函数
单调递增区间;(2)由已知,可得
,根据正弦函数的性质,可知当
,即
取得最大值,进而得到当
取得最大值时的
的取值集合.
试题解析:(1) ![]()
当
即![]()
因此,函数
的单调递增区间为![]()
(2)由已知,![]()
当
即
,也即
时,![]()
当
的最大值为![]()
【方法点晴】本题主要考查三角函数的单调性、三角函数的图象的变换以及三角函数的最值,属于难题.三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.
科目:高中数学 来源: 题型:
【题目】若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:
分 组 | 频 数 | 频 率 |
[-3,-2) | 0.10 | |
[-2,-1) | 8 | |
(1,2] | 0.50 | |
(2,3] | 10 | |
(3,4] | ||
合计 | 50 | 1.00 |
(1)将上面表格中缺少的数据填充完整.
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率.
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象关于直线
对称,且图象上相邻最高点的距离为
.
⑴求
的解析式;
⑵将
的图象向右平移
个单位,得到
的图象若关于
的方程
在
上有唯一解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国象棋中规定:马走“日”字,象走“田”字.如下图,在中国象棋的半个棋盘(
的矩形中每个小方格都是单位正方形)中,若马在
处,可跳到
处,也可跳到
处,用向量
,
表示马走了“一步”.通过探究,你能在图中画出马在
处走了一步的所有情况吗?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
经过点
,
,且它的圆心在直线
上.
(Ⅰ)求圆
的方程;
(Ⅱ)求圆
关于直线
对称的圆的方程。
(Ⅲ)若点
为圆
上任意一点,且点
,求线段
的中点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点
处下上至
处有两种路径.一种是从
沿直线步行到
,另一种是先从
沿索道乘缆车到
,然后从
沿直线步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
,假设缆车匀速直线运动的速度为
,山路
长为1260
,经测量
,
.
![]()
(1)求索道
的长;
(2)问:乙出发多少
后,乙在缆车上与甲的距离最短?
(3)为使两位游客在
处互相等待的时间不超过
,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量
(件)与单价
(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.
![]()
(1)根据周销售量图写出
(件)与单价
(元)之间的函数关系式;
(2)写出利润
(元)与单价
(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com