精英家教网 > 高中数学 > 题目详情
14.关于x的不等式|x-1|-|x-3|>a2-3a的解集为非空数集,则实数a的取值范围是($\frac{3-\sqrt{17}}{2}$,$\frac{3+\sqrt{17}}{2}$).

分析 由题意可得|x-1|-|x-3|>a2-3a的解集非空,根据绝对值的意义求得|x-1|-|x-3|的最大值为2,可得2>a2-3a,由此求得实数a的取值范围.

解答 解:关于x的不等式|x-1|-|x-3|>a2-3a的解集为非空数集,
则a2-3a<(|x-1|-|x-3|)max即可,
而|x-1|-|x-3|的最大值是2,
∴只需a2-3a-2<0,解得:$\frac{3-\sqrt{17}}{2}$<a<$\frac{3+\sqrt{17}}{2}$,
故答案为:($\frac{3-\sqrt{17}}{2}$,$\frac{3+\sqrt{17}}{2}$).

点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的能成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设F1和F2是双曲线$\left\{\begin{array}{l}x=2secθ\\ y=tanθ\end{array}\right.(θ为$为参数)的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,那么△F1PF2的面积是(  )
A.1B.$\frac{{\sqrt{5}}}{2}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=arcsin(x2-2x)的单调递减区间是$[1-\sqrt{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,已知曲线C1的方程为x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,且取相同的单位长度建立极坐标系,已知直线l的极坐标方程为ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;
(2)设P为曲线C2上任意一点,求点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,且满足$\frac{b}{a}$+$\frac{a}{b}$=4cosC.
(1)求$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$的值;
(2)若tanA=2tanB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,Sn=2an-n.
(1)证明:{an +1}为等比数列;
(2)证明:$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<1;
(3)Tn为数列{bn}前n项和,设bn =log2(an +1),是否存在正整数m,k,b${\;}_{k+1}^{2}$=2Tm +19时成立,若存在,求出m,k;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知:圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0
求:(1)求直线l横过定点P的坐标;
(2)求证:不论m取何值,直线l与圆恒有两个交点;
(3)求直线l被圆M截得的弦长最小时的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知c<d,a>b>0,下列不等式中必成立的一个是(  )
A.a+c>b+dB.a-c>b-dC.ad<bcD.$\frac{a}{c}$>$\frac{b}{d}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC满足$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,设M是△ABC内的一点(不含边界),定义f(M)=(x,y,z),其中x,y,z分别表示△MBC,△MCA,△MAB的面积,若f(M)=(x,y,$\frac{1}{3}$),则$\frac{1}{x}$+$\frac{4}{y}$的最小值为(  )
A.4B.6C.9D.$\frac{27}{2}$

查看答案和解析>>

同步练习册答案