精英家教网 > 高中数学 > 题目详情
10.若复数z满足z(-1+2i)=|1+3i|2,(i为虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式变形,再由复数代数形式的乘法运算化简复数z,求出z在复平面内对应的点的坐标得答案.

解答 解:由z(-1+2i)=|1+3i|2
得$z=\frac{|1+3i{|}^{2}}{-1+2i}=\frac{(\sqrt{1+{3}^{2}})^{2}}{-1+2i}$=$\frac{10(-1-2i)}{(-1+2i)(-1-2i)}=\frac{-10-20i}{5}=-2-4i$,
则复数z在复平面内对应的点的坐标为:(-2,-4),位于第三象限.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知f(x)=cosx,$则f'(\frac{π}{2})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的各项均为正数,a1=1,对任意n∈N*,an+12-1=4an(an+1),数列{bn}满足b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}{b_n}$.
(1)求数列{an},{bn}的通项公式;
(2)记Tn为数列{bn}的前n项和,Sn为数列{log2(an+1)}的前n项和.f(n)=$\frac{{2{S_n}(2-{T_n})}}{n+2}$,试问f(n)是否存在最大值?若存在,求出最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=($\frac{1+i}{-1+i}$)2016+i3(i为虚数单位)的共轭复数为(  )
A.1+2iB.1+iC.1-iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数$f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期为π,且$f(x+\frac{π}{6})$是偶函数,则(  )
A.f(x)在$(-\frac{π}{4},\frac{π}{6})$单调递增B.f(x)在$(\frac{π}{4},\frac{3}{4}π)$单调递增
C.f(x)在$(-\frac{π}{4},\frac{π}{6})$单调递减D.f(x)在$(\frac{π}{4},\frac{3}{4}π)$单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-x.
(1)证明:对任意的x1,x2∈(0,+∞),都有|f(x1)|>$\frac{ln{x}_{2}}{{x}_{2}}$;
(2)设m>n>0,比较$\frac{f(m)+m-(f(n)+n)}{m-n}$与$\frac{m}{{m}^{2}-{n}^{2}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正三棱柱A′B′C′-ABC中,D为AA′中点,E为BC′上的一点,AB=a,CC′=h
(1)若DE⊥平面BCC′B′,求证:BE=EC′
(2)平面BC′D将棱柱A′B′C′-ABC分割为两个几何体,记上面一个几何体的体积为V1,下面一个几何体的体积为V2,求V1,V2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线y2=16x,焦点为F,A(8,2)为平面上的一定点,P为抛物线上的一动点,则|PA|+|PF|的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,等腰直角△ABC中,AB=AC=1,在边AB、AC上分别取D、E两点,沿线段DE折叠,顶点A恰好落在边BC上,则AD长度的最小值为$\sqrt{2}$-1..

查看答案和解析>>

同步练习册答案