| A. | f(x)在$(-\frac{π}{4},\frac{π}{6})$单调递增 | B. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$单调递增 | ||
| C. | f(x)在$(-\frac{π}{4},\frac{π}{6})$单调递减 | D. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$单调递减 |
分析 利用三角恒等变换求出f(x)的解析式,根据正弦函数在(-$\frac{π}{3}$,$\frac{π}{2}$)和($\frac{2π}{3}$,$\frac{5π}{3}$)上的单调性判断f(x)在(-$\frac{π}{4}$,$\frac{π}{6}$)和($\frac{π}{4}$,$\frac{3π}{4}$)上的单调性.
解答 解:f(x)=$\sqrt{2}$sin(ωx+Φ+$\frac{π}{4}$),
∴f(x)的最小正周期T=$\frac{2π}{ω}$=π,∴ω=2,
∵f(x+$\frac{π}{6}$)=$\sqrt{2}$sin(2x+$\frac{π}{3}$+Φ+$\frac{π}{4}$)是偶函数,
∴$\frac{π}{3}$+Φ+$\frac{π}{4}$=$\frac{π}{2}$+kπ,解得Φ=-$\frac{π}{12}$+kπ,k∈Z,
又|Φ|<$\frac{π}{2}$,∴Φ=-$\frac{π}{12}$.
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{6}$),
∴当x∈(-$\frac{π}{4}$,$\frac{π}{6}$)时,2x+$\frac{π}{6}$∈(-$\frac{π}{3}$,$\frac{π}{2}$),
当x∈($\frac{π}{4}$,$\frac{3π}{4}$)时,2x+$\frac{π}{6}$∈($\frac{2π}{3}$,$\frac{5π}{3}$),
∵y=sinx在(-$\frac{π}{3}$,$\frac{π}{2}$)上单调递增,在($\frac{2π}{3}$,$\frac{5π}{3}$)上不单调,
∴f(x)在(-$\frac{π}{4}$,$\frac{π}{6}$)上单调递增,在($\frac{π}{4}$,$\frac{3π}{4}$)上不单调.
故选A.
点评 本题考查了三角恒等变换,正弦函数的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -40 | B. | -20 | C. | 40 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 4 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com