精英家教网 > 高中数学 > 题目详情

我舰在敌岛A处南偏西50°的B处,发现敌舰正离开A岛沿北偏西10°的方向以每小时10海里的速度航行,我舰要用2小时的时间追赶敌舰,设图中的处是我舰追上敌舰的地点,且已知AB距离为12海里.

(1)求我舰追赶敌舰的速度;
(2)求∠ABC的正弦值.

(1)14海里/小时
(2)

解析试题分析:解:(1)在△ABC中,由已知,AC=10×2=20(海里),AB=12(海里),
∠BAC=180°-50°-10°=120°.                   1分
由余弦定理,得BC2=AB2+AC2-2AB·ACcos 120°=784,       4分
∴BC=28海里,                          5分
∴v=14海里/小时.                       6分

(2)在△ABC中,根据正弦定理,得  9分
所以.       11分
故∠ABC的正弦值是.          12分
考点:解三角形的运用
点评:主要是考查了正弦定理和余弦定理的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,已知.
(Ⅰ)求的值;
(Ⅱ)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

怀化市某棚户区改造工程规划用地近似为图中半径为的圆面,图中圆内接四边形为拟定拆迁的棚户区,测得百米,百米,百米.

(Ⅰ)请计算原棚户区的面积及圆面的半径
(Ⅱ)因地理条件的限制,边界不能变更,而边界可以调整,为了提高棚户区改造建设用地的利用率,请在圆弧上求出一点,使得棚户区改造的新建筑用地的面积最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告之在甲船的南偏西30°,相距10海里C处的乙船.

(1)求处于C处的乙船和遇险渔船间的距离;
(2)设乙船沿直线CB方向前往B处救援,求∠ACB的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的三个内角所对的边分别为.已知.
(1)求角的大小;
(2)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

钝角三角形ABC的外接圆半径为2,最长的边,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:A、B、C是的内角,分别是其对边长,向量.
(Ⅰ)求角A的大小;
(Ⅱ)若的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中向量
(1)求的最小正周期;
(2)在中, 分别是角的对边,  求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,
(1)求的值;
(2)求的值.

查看答案和解析>>

同步练习册答案