精英家教网 > 高中数学 > 题目详情
5.已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0(m∈Z),若两方程的根都是整数,求m的取值范围.

分析 根据方程根的情况结合二次函数的性质求出m的范围,取交集即可.

解答 解:∵mx2-4x+4=0是一元二次方程,∴m≠0.
又另一方程为x2-4mx+4m2-4m-5=0,且两方程都要有实根,
∴$\left\{\begin{array}{l}{{△}_{1}=16(1-m)≥0}\\{{△}_{2}=16{m}^{2}-4(4{m}^{2}-4m-5)≥0}\end{array}\right.$,
解得m∈[-$\frac{5}{4}$,1]----(8分)
∵两方程的根都是整数,故其根的和与积也为整数,
∴$\left\{\begin{array}{l}{\frac{4}{m}∈Z}\\{4m∈Z,4{m}^{2}-4m-5∈Z}\end{array}\right.$
∴m为4的约数.又∵m∈[-$\frac{5}{4}$,1],∴m=-1或1.
当m=-1时,第一个方程x2+4x-4=0的根为非整数;
而当m=1时,两方程的根均为整数,
∴两方程的根均为整数的充要条件是m=1.

点评 本题考查了m的取值范围,考查方程根的情况,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.数列{an}满足an+1=an(an-n)+1,n∈N+
(1)当a1=2时,求a2,a3,a4,并猜想出an的一个通项公式(不要求证)
(2)若a1≥3,用数学归纳法证明:对任意的n=1,2,3,…,都有an≥n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知曲线C的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的直角坐标方程为x2+y2-2x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=Z,集合A={-1,0,1},B={0,1,3},则B∩∁UA=(  )
A.{3}B.{0,1}C.{-1}D.{-1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于函数y=f(x),任意x∈R,均有f(x+2)=$\frac{1}{f(x)}$,当x∈(0,2]时,f(x)=x.
(1)当x∈(2,4]时,求f(x)的解析式;
(2)若f(m)=1,求m的值;
(3)求和:f(1)+f(2)+f(3)+…+f(2015).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,已知△ABC的顶点A(0,-2)和C(0,2),顶点B在椭圆$\frac{y^2}{12}$+$\frac{x^2}{8}$=1上,则$\frac{sinA+sinC}{sinB}$的值是$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a>0,b>0,a+2b=1,则$\frac{1}{3a+4b}+\frac{1}{a+3b}$取到最小值为$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中x=0是极值点的函数是(  )
A.f(x)=-x3B.f(x)=x2C.f(x)=sinx-xD.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,A,B是单位圆O上的点,且B在第二象限,C是圆与x轴正半轴的交点,A点的坐标为($\frac{3}{5}$,$\frac{4}{5}$),且A与B关于y轴对称.
(1)求sin∠COA; 
(2)求cos∠COB.

查看答案和解析>>

同步练习册答案