精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面为直角梯形,为线段的中点,底面,点是棱的中点,平面与棱相交于点

1)求证:

2)若所成的角为,求直线与平面所成角的正弦值.

【答案】1)见解析(2

【解析】

1)首先证明四边形为平行四边形,得到,然后可得平面,然后由线面平行的性质定理可证

2)以为原点,轴,轴,轴建立空间直角坐标系,设,首先利用所成的角为求出,然后算出平面的法向量坐标和的坐标,然后可算出答案.

1)证明:因为中点,且

所以,又因为,所以

所以四边形为平行四边形

所以,因为平面平面,所以平面

因为平面,平面平面

所以

2)由(1)可得

因为,所以,且平面

所以以为原点,轴,轴,轴建立空间直角坐标系

,因为所成角为

所以

解得

所以

设平面得一个法向量

,可得,可取

设直线与平面所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上的一点,其焦点为点,且抛物线在点处的切线交圆于不同的两点.

1)若点,求的值;

2)设点为弦的中点,焦点关于圆心的对称点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为曲线上一动点,过作两条渐近线的垂线,垂足分别是.

1)当运动到时,求的值;

2)设直线(不与轴垂直)与曲线交于两点,与轴正半轴交于点,与轴交于点,若,且,求证为定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如图的频率分

布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.

(3)若从样本中数学成绩在两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉市掀起了轰轰烈烈的十日大会战,要在10天之内,对武汉市民做一次全员检测,彻底摸清武汉市的详细情况.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:

方案①:将每个人的血分别化验,这时需要验1000.

方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血就只需检验一次(这时认为每个人的血化验);否则,若呈阳性,则需对这个人的血样再分别进行一次化验这样,该组个人的血总共需要化验. 假设此次检验中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.

1)设方案②中,某组个人中每个人的血化验次数为,求的分布列;

2)设. 试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以减少多少次?(最后结果四舍五入保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(13分)

在平面直角坐标系xOy中,抛物线上异于坐标原点O的两不同动点A、B满足(如图所示).

)求得重心G(即三角形三条中线的交点)的轨迹方程;

的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为.

1)求

2)若上的点,平分,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的右顶点为A,左焦点为,过点A的直线与椭圆C的另一个交点为B轴,点在直线.

I)求的面积;

II)过点S的直线与椭圆C交于PQ两点,且的面积是的面积的6倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且与抛物线交于两点,为坐标原点)的面积为

(1)求椭圆的方程;

(2)如图,点为椭圆上一动点(非长轴端点)为左、右焦点,的延长线与椭圆交于点,的延长线与椭圆交于点,求面积的最大值.

查看答案和解析>>

同步练习册答案