【题目】在四棱锥
中,底面
为直角梯形,
,
,
,
为线段
的中点,
底面
,点
是棱
的中点,平面
与棱
相交于点
.
![]()
(1)求证:
;
(2)若
与
所成的角为
,求直线
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
:
上的一点,其焦点为点
,且抛物线
在点
处的切线
交圆
:
于不同的两点
,
.
(1)若点
,求
的值;
(2)设点
为弦
的中点,焦点
关于圆心
的对称点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,
为曲线
上一动点,过
作两条渐近线的垂线,垂足分别是
和
.
(1)当
运动到
时,求
的值;
(2)设直线
(不与
轴垂直)与曲线
交于
、
两点,与
轴正半轴交于
点,与
轴交于
点,若
,
,且
,求证
为定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:
,
,
,
,
,
,
后得到如图的频率分
布直方图.
![]()
(1)求图中实数
的值;
(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.
(3)若从样本中数学成绩在
,
与
,
两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】武汉市掀起了轰轰烈烈的“十日大会战”,要在10天之内,对武汉市民做一次全员检测,彻底摸清武汉市的详细情况.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有
份血液样本,有以下两种检验方式:
方案①:将每个人的血分别化验,这时需要验1000次.
方案②:按
个人一组进行随机分组,把从每组
个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这
个人的血就只需检验一次(这时认为每个人的血化验
次);否则,若呈阳性,则需对这
个人的血样再分别进行一次化验这样,该组
个人的血总共需要化验
次. 假设此次检验中每个人的血样化验呈阳性的概率为
,且这些人之间的试验反应相互独立.
(1)设方案②中,某组
个人中每个人的血化验次数为
,求
的分布列;
(2)设
. 试比较方案②中,
分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以减少多少次?(最后结果四舍五入保留整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(13分)
在平面直角坐标系xOy中,抛物线
上异于坐标原点O的两不同动点A、B满足
(如图所示).
![]()
(Ⅰ)求
得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)
的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的右顶点为A,左焦点为
,过点A的直线
与椭圆C的另一个交点为B,
轴,点![]()
在直线
上.
(I)求
的面积;
(II)过点S的直线
与椭圆C交于P,Q两点,且
的面积是
的面积的6倍,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,且与抛物线
交于
,
两点,
(
为坐标原点)的面积为
.
![]()
(1)求椭圆
的方程;
(2)如图,点
为椭圆上一动点(非长轴端点)
,
为左、右焦点,
的延长线与椭圆交于
点,
的延长线与椭圆交于
点,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com