精英家教网 > 高中数学 > 题目详情
已知函数是奇函数,且满足f(1)=f(4)
(Ⅰ)求实数a、b的值; 
(Ⅱ)试证明函数f(x)在区间(0,2]单调递减,在区间(2,+∞)单调递增;
(Ⅲ)是否存在实数k同时满足以下两个条件:
①不等式对x∈(0,+∞)恒成立;
②方程f(x)=k在x∈[-6,-1]上有解.若存在,试求出实数k的取值范围,若不存在,请说明理由.
【答案】分析:(Ⅰ)先根据f(1)=f(4)求出b的值;再结合f(x)+f(-x)=0对x≠0恒成立求出a的值即可;
(Ⅱ)直接按照单调性的证明过程来证即可;
(Ⅲ)先结合第二问的结论知道函数f(x)在(0,+∞)上有最小值f(2)=4以及可知函数f(x)在(-∞,-2)上递增,在[-2,0)上递减;对于①;转化为f(x)min>-;对于②转化为求函数的值域问题即可;最后把两个成立的范围相结合即可求出结论.
解答:解:(Ⅰ) 由f(1)=f(4)得,解得b=4.  …(1分)
为奇函数,得f(x)+f(-x)=0对x≠0恒成立,
,所以a=0.  …(3分)
(Ⅱ)由(Ⅰ)知,
任取x1,x2∈(0,2],且x1<x2,…(5分)
∵0<x1<x2≤2,∴x1-x2<0,x1x2>0,x1x2-4<0,
∴f(x1)-f(x2)>0,f(x1)>f(x2),
所以,函数f(x)在区间(0,2]单调递减.  …(7分)
类似地,可证f(x)在区间(2,+∞)单调递增.  …(8分)
(Ⅲ)对于条件①,由(Ⅱ)得函数f(x)在(0,+∞)上有最小值f(2)=4,
故若对x∈(0,+∞)恒成立,
则需f(x)min>-,则4>-
∴k>-8;
对于条件②,由(Ⅱ)可知函数f(x)在(-∞,-2)上递增,在[-2,0)上递减,
∴函数f(x)在[-6,-2]上递增,在[-2,0)上递减,
又f(-6)=-,f(-2)=-4,f(-1)=-5,
所以函数f(x)在[-6,-1]上的值域为[-,-4],
若方程f(x)=k在[-6,-1]上有解,则需-k≤-4,
若同时满足条件①②,则需
所以:-≤k≤-4.
故当-≤k≤-4时,条件①②同时满足.
点评:本题主要考察函数奇偶性与单调性的综合.解决第一问的关键在于利用奇函数的定义得到f(x)+f(-x)=0对x≠0恒成立求出a的值.
练习册系列答案
相关习题

科目:高中数学 来源:2015届云南省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本小题12分)

已知函数是奇函数,且

(1)求的值;

(2)用定义证明在区间上是减函数.

 

查看答案和解析>>

科目:高中数学 来源:2013届云南大理宾川县四中高二5月月考文科数学试卷(解析版) 题型:选择题

已知函数是奇函数,且在区间上单调递减,则上是(     )  

A. 单调递减函数,且有最小值           B. 单调递减函数,且有最大值

C. 单调递增函数,且有最小值            D. 单调递增函数,且有最大值

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第一次月考数学试卷(解析版) 题型:解答题

已知函数是奇函数,且.

(1)求函数f(x)的解析式;  

(2)判断函数f(x)在上的单调性,并加以证明.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省五校高三第一次联考理科数学 题型:解答题

(本题15分)已知函数是奇函数,且图像在点 为自然对数的底数)处的切线斜率为3.

(1)   求实数的值;

(2)   若,且对任意恒成立,求的最大值;

(3)   当时,证明:

 

 

查看答案和解析>>

科目:高中数学 来源:2011--2012学年山西省第一学期高一月考数学试卷 题型:解答题

已知函数是奇函数,且满足

(Ⅰ)求实数的值;

(Ⅱ)试证明函数在区间单调递减,在区间单调递增;

(Ⅲ)是否存在实数同时满足以下两个条件:1不等式恒成立; 2方程上有解.若存在,试求出实数的取值范围,若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案