精英家教网 > 高中数学 > 题目详情
12.设由不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$表示的平面区域为Ω,P∈Ω,过点P作圆O:x2+y2=1的两条切线,切点分别为A、B,记∠APB=α,则当α最小时,cosα=(  )
A.$\frac{\sqrt{95}}{10}$B.$\frac{19}{20}$C.$\frac{9}{10}$D.$\frac{1}{2}$

分析 依据不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用圆的方程画出图形,确定α最小时点P的位置,最后利用二倍角公式计算即可.

解答 解:如图阴影部分表示不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$,确定的平面区域,
当P离圆O最远时α最小,此时点P坐标为:(-4,-2),
记∠APO=β,则α=2β,则sinβ=$\frac{AO}{PO}$=$\frac{1}{2\sqrt{5}}$,
则cosα=cos2β=1-2sin2β=1-2×($\frac{1}{2\sqrt{5}}$)2
计算得cosα=$\frac{9}{10}$,
故选:C.

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-1|+|x-m|
(Ⅰ)当m=2时,求不等式f(x)>4的解集;
(Ⅱ)当m>1时,若f(x)>4的解集是{x|x<0或x>4},且关于x的不等式f(x)<a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式x2-5x≤0的解集是{x|0≤x≤5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2+bx+c满足f(1-x)=f(1+x),f(0)>0,且f(m)=f(n)=0(m≠n),则${log_3}m-{log_{\frac{1}{3}}}n$的值(  )
A.大于0B.等于0C.小于0D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若命题“?x∈[1,3],x2-2≤a”为真命题,则实数a的最小值为(  )
A.-2B.-1C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.运行如图所示程序框图,若输入值x∈[-2,2],则输出值y的取值范围是[-1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a∈R,则“a>1”是“a2>l”的充分不必要条件.
(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=ax2+ex在(0,+∞)上单调递增,则实数a的取值范围是(  )
A.[-$\frac{e}{2}$,+∞)B.[0,+∞)C.[-e,+∞)D.[-2e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.原命题是“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d”,则它的逆否命题是“已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d”..

查看答案和解析>>

同步练习册答案