精英家教网 > 高中数学 > 题目详情
1.若函数f(x)=ax2+ex在(0,+∞)上单调递增,则实数a的取值范围是(  )
A.[-$\frac{e}{2}$,+∞)B.[0,+∞)C.[-e,+∞)D.[-2e,+∞)

分析 问题转化为2a≥-$\frac{{e}^{x}}{x}$在x∈(0,+∞)恒成立,令g(x)=-$\frac{{e}^{x}}{x}$,根据函数的单调性求出a的范围即可.

解答 解:∵f′(x)=2ax+ex,函数f(x)在(0,+∞)递增,
问题等价于f′(x)=2ax+ex≥0在x∈(0,+∞)恒成立,
即2a≥-$\frac{{e}^{x}}{x}$在x∈(0,+∞)恒成立,
令g(x)=-$\frac{{e}^{x}}{x}$,则g′(x)=$\frac{{e}^{x}(1-x)}{{x}^{2}}$,
x∈(0,1)时,g′(x)>0,x∈(1,+∞)时,g′(x)<0,
∴函数g(x)在(0,1)递增,在(1,+∞)递减,
∴g(x)≤g(1)=-e,
∴2a≥-e,a≥-$\frac{e}{2}$,
故选:A.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,考查函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数f(x)=log2(x2-2x-3)(a>0,a≠1)的定义域为{x|x>3或x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设由不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$表示的平面区域为Ω,P∈Ω,过点P作圆O:x2+y2=1的两条切线,切点分别为A、B,记∠APB=α,则当α最小时,cosα=(  )
A.$\frac{\sqrt{95}}{10}$B.$\frac{19}{20}$C.$\frac{9}{10}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知M是面积为1的△ABC内的一点(不含边界),若△MBC,△MCA,△MAB的面积分为x,y,z,则$\frac{1}{x+y}+\frac{x+y}{z}$的最小值分别为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x=2n-1,n∈Z},B={x|(x+2)(x-3)<0},则A∩B=(  )
A.{-1,0,1,2}B.{-1,1}C.{1}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义域为R的函数f(x)满足f(0)=1,f′(x)<f(x)+1,则不等式$\frac{f(x)+1}{{e}^{x}}$<2的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={x|-1≤x≤1},N={x|$\frac{x}{x-1}$≤0},则M∩N=(  )
A.{x|0≤x≤1}B.{x|0≤x<1}C.{x|-1≤x≤0}D.{x|-1≤x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某高校通过调查在发现该校毕业生的学习成绩与就业情况具有线性相关关系,现对5名毕业生的数据进行分析,他们的专业课成绩xi及现在的工作年薪yi情况如下:
专业课成绩xi(分)77899
年薪yi(万元)1012141415
(1)根据表中数据,计算专业课成绩与年薪的线性相关系数;
(2)求出专业课成绩与年薪关系的线性回归方程,并预测专业课成绩为9.6分的学生毕业后的年薪;
(3)若再从这5名毕业生中随机抽取2名进行详细调查,求恰有一名毕业生的专业课成绩不少于9分的概率.附:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}•\sqrt{\sum_{i=1}^{n}{y}_{i}^{2}-n{\overline{y}}^{2}}}$,b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=a{e^x}lnx+\frac{{b{e^{x-2}}}}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为$y=e(x-1)+\frac{5}{e}$(其中e=2.71828…是自然对数的底数).
( I)求实数a、b的值;
( II)求证:f(x)>1.

查看答案和解析>>

同步练习册答案