精英家教网 > 高中数学 > 题目详情

【题目】学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm2,上、下两边各空2 dm,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?

【答案】解:设版心的高为,则版心的宽为,此时四周空白面积为:

可求得当版心高为,宽为,海报四周空白面积最小.

【解析】

试题

首先设出高,根据面积可用高将宽表示出来,然后设出空白面积,用高和宽将其表示出来,同时注意高的范围.而后利用导数法判断单调性,可得最值.

试题解析:

设版心的高为,则版心的宽为.

此时四周空白面积为

求导数得:

,解得(舍去)

于是宽为

时,;当时,

因此,x16是函数的极小值点,也是最小值点。

所以当版心高为,宽为时,能使四周空白面积最小。

答:当版心高为,宽为时,海报四周空白面积最小。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】圆心在原点的两圆半径分别为,点是大圆上一动点,过点作轴的垂线,垂足为 与小圆交于点,过的垂线,垂足为,设点坐标为.

(1)求的轨迹方程;

(2) 已知直线 是常数,且 是轨迹上的两点,且在直线的两侧,满足两点到直线的距离相等.平面内是否存在定点,使得恒成立?若存在,求出定点坐标;若不可能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业从某种型号的产品中抽取了件对该产品的某项指标的数值进行检测,将其整理成如图所示的频率分布直方图,已知数值在100~110的产品有2l件.

(1)求的值;

(2)规定产品的级别如下表:

已知一件级产品的利润分别为10,20,40元,以频率估计概率,现质检部门从该批产品中随机抽取两件,两件产品的利润之和为,求的分布列和数学期望;

(3)为了了解该型号产品的销售状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图,由折线图可以看出,可用线性回归模型拟合月度市场卢有率(%)与月份代码之间的关系.求关于的线性回归方程,并预测2017年4月份(即时)的市场占有率.

(参考公式:回归直线方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式

11

2349

3456725

4567891049

照此规律,第n个等式为__________________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,倾斜角为的直线经过椭圆的右焦点且与圆相切.

(1)求椭圆 的方程;

(2)若直线与圆相切于点,且交椭圆两点,射线于椭圆交于点,设的面积于的面积分别为.

①求的最大值;

②当取得最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C =1 (a>0,b>0)的左、右焦点分别为F1F2,点P为双曲线右支上一点,若|PF1|2=8a|PF2|,则双曲线C的离心率的取值范围为(  )

A. (1,3] B. [3,+∞)

C. (0,3) D. (0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,.

(Ⅰ)若点的中点,求证:∥平面

(Ⅱ)当平面平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自治区有甲、乙两位航模运动员参加了国家队集训,现分别从他们在集训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85

(I)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩中的位数;

(II)现要从中派一人参加国际比赛,从平均成绩和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.

查看答案和解析>>

同步练习册答案