精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,倾斜角为的直线经过椭圆的右焦点且与圆相切.

(1)求椭圆 的方程;

(2)若直线与圆相切于点,且交椭圆两点,射线于椭圆交于点,设的面积于的面积分别为.

①求的最大值;

②当取得最大值时,求的值.

【答案】(1) ;(2).

【解析】试题分析:(1)根据离心率为、圆心到直线距离等于半径,结合性质 ,列出关于的方程组,求出,即可得椭圆 的方程;(2) 直线与圆相切得: ,将直线代入椭圆的方程得: ①根据点到直线距离公式、弦长公式结合韦达定理及三角形面积公式可得,利用基本不等式可得结果;②当取得最大值时, .

试题解析:(1)依题直线的斜率.设直线的方程为,

依题有:

(2)由直线与圆相切得: .

.将直线代入椭圆的方程得:

,且.

设点到直线的距离为,故的面积为:

,

.等号成立.故的最大值为1.

,由直线与圆相切于点,可得

.

.,

【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形面积最值的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为保证学生夜晚安全,实行教师值夜班制度,已知共5名教师每周一到周五都要值一次夜班,每周如此,且没有两人同时值夜班,周六和周日不值夜班,若昨天值夜班,从今天起至少连续4天不值夜班, 周四值夜班,则今天是周___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)若函数的零点至少有两个,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.

(1)当x∈[1,e] 时,求f (x)的最小值;

(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm2,上、下两边各空2 dm,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为 (其中为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(其中).

(1)若点的直角坐标为,且点在曲线内,求实数的取值范围;

(2)若,当变化时,求直线被曲线截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若函数在区间上是单调函数,试求实数的取值范围;

(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数上的最小值;

2)若对任意的恒成立.试求实数a的取值范围;

3)若时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15分)如图,在半径为的半圆形(O为圆心)铁皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),记圆柱形罐子的体积为

(1)按下列要求建立函数关系式:

,将表示为的函数;

),将表示为的函数;

(2)请选用(1)问中的一个函数关系,求圆柱形罐子的最大体积.

查看答案和解析>>

同步练习册答案